Abstract:
A photocurable composition can comprise a polymerizable material and a photo-initiator, wherein the polymerizable material can comprise at least one multi-functional vinylbenzene in an amount of 15 wt % to 85 wt % and at least one multi-functional acrylate monomer in an amount of 15 wt % to 85 wt % based on the total weight of the photocurable composition. A photo-cured layer of the photocurable composition can have a high heat stability up to 400° C. and a glass transition temperature of at least 135° C.
Abstract:
A pattern is formed on a substrate with forming a layer of a curable composition (A1) containing a polymerizable compound (a1) on a surface of the substrate, then dispensing droplets of a curable composition (A2) containing a polymerizable compound (a2) dropwise discretely onto the curable composition (A1) layer, subsequently sandwiching a mixture layer of the curable composition (A1) and the curable composition (A2) between a mold and the substrate, then irradiating the mixture layer with light to cure the mixture layer, and releasing the mold from the mixture layer after the curing. The curable composition (A1) except a solvent has a viscosity at 25° C. of 40 mPa·s or more and less than 500 mPa·s. The curable composition (A2) except a solvent has a viscosity at 25° C. of 1 mPa·s or more and less than 40 mPa·s.
Abstract:
A pattern is formed on a substrate with forming a layer of a curable composition (A1) containing a component (a1) serving as a polymerizable compound and a component (d1) serving as a solvent on a surface of the substrate, then dispensing droplets of a curable composition (A2) containing at least a component (a2) serving as a polymerizable compound dropwise discretely onto the layer of the curable composition, subsequently sandwiching a mixture layer of the curable composition (A1) and the curable composition (A2) between a mold and the substrate, then irradiating the mixture layer with light to cure the layer, and releasing the mold from the mixture layer after the curing.
Abstract:
A nanoimprint lithography method includes disposing a pretreatment composition on a substrate to form a pretreatment coating. The pretreatment composition includes a polymerizable component. Discrete imprint resist portions are disposed on the pretreatment coating, with each discrete portion of the imprint resist covering a target area of the substrate. A composite polymerizable coating is formed on the substrate as each discrete portion of the imprint resist spreads beyond its target area. The composite polymerizable coating includes a mixture of the pretreatment composition and the imprint resist. The composite polymerizable coating is contacted with a template, and is polymerized to yield a composite polymeric layer on the substrate. The interfacial surface energy between the pretreatment composition-and air exceeds the interfacial surface energy between the imprint resist and air or between at least a component of the imprint resist and air.
Abstract:
The pattern forming method, which is a photo-nanoimprint technology, includes in this order: laying a layer formed of a curable composition (A1) containing at least a polymerizable compound on a surface of a substrate; dispensing liquid droplets of a curable composition (A2) containing at least a polymerizable compound dropwise discretely onto the layer of (A1) to lay the liquid droplets; sandwiching a layer obtained by partially mixing (A1) and (A2) between a mold and the substrate; of irradiating the layer obtained by partially mixing (A1) and (A2) with light from a side of the mold to cure the layer in one stroke; and releasing the mold from the layer formed of the curable compositions after the curing, in which a value Vr/Vc obtained by dividing a volume of (A2) per shot area (Vr) by a volume of (A1) (Vc) is 4 or more and 15 or less.
Abstract:
A nanoimprint lithography method includes disposing a pretreatment composition including a polymerizable component on a substrate to form a pretreatment coating. Discrete imprint resist portions are disposed on the pretreatment coating, with each discrete portion of the imprint resist covering a target area of the substrate. The imprint resist is a polymerizable composition and includes a fluorinated photoinitiator. A composite polymerizable coating is formed on the substrate as each discrete portion of the imprint resist spreads beyond its target area. The composite polymerizable coating includes a mixture of the pretreatment composition and the imprint resist. The composite polymerizable coating is contacted with a template, and is polymerized to yield a composite polymeric layer on the substrate. The interfacial surface energy between the pretreatment composition and air exceeds the interfacial surface energy between the imprint resist and air or between at least a component of the imprint resist and air.
Abstract:
A nanoimprint lithography method includes disposing a pretreatment composition including a polymerizable component on a substrate to form a pretreatment coating. Discrete imprint resist portions are disposed on the pretreatment coating, with each discrete portion of the imprint resist covering a target area of the substrate. The imprint resist is a polymerizable composition and includes a fluorinated photoinitiator. A composite polymerizable coating is formed on the substrate as each discrete portion of the imprint resist spreads beyond its target area. The composite polymerizable coating includes a mixture of the pretreatment composition and the imprint resist. The composite polymerizable coating is contacted with a template, and is polymerized to yield a composite polymeric layer on the substrate. The interfacial surface energy between the pretreatment composition and air exceeds the interfacial surface energy between the imprint resist and air or between at least a component of the imprint resist and air.
Abstract:
A nanoimprint lithography method includes disposing a pretreatment composition including a polymerizable component on a substrate to form a pretreatment coating. Discrete imprint resist portions are disposed on the pretreatment coating, with each discrete portion of the imprint resist covering a target area of the substrate. The imprint resist is a polymerizable composition and includes a fluorinated photoinitiator. A composite polymerizable coating is formed on the substrate as each discrete portion of the imprint resist spreads beyond its target area. The composite polymerizable coating includes a mixture of the pretreatment composition and the imprint resist. The composite polymerizable coating is contacted with a template, and is polymerized to yield a composite polymeric layer on the substrate. The interfacial surface energy between the pretreatment composition and air exceeds the interfacial surface energy between the imprint resist and air or between at least a component of the imprint resist and air.
Abstract:
Facilitating throughput in nanoimprint lithography processes by using an imprint resist including fluorinated components and a substrate treated with a pretreatment composition to promote spreading of an imprint resist on the substrate. The interfacial surface energy between the pretreatment composition and air exceeds the interfacial surface energy between the imprint resist and air by at least 1 mN/m, and the contact angle of the imprint resist on the surface of the nanoimprint lithography template is less than 15°.
Abstract:
A nanoimprint lithography method includes disposing a pretreatment composition on a substrate to form a pretreatment coating. The pretreatment composition includes a polymerizable component. Discrete imprint resist portions are disposed on the pretreatment coating, with each discrete portion of the imprint resist covering a target area of the substrate. A composite polymerizable coating is formed on the substrate as each discrete portion of the imprint resist spreads beyond its target area. The composite polymerizable coating includes a mixture of the pretreatment composition and the imprint resist. The composite polymerizable coating is contacted with a template, and is polymerized to yield a composite polymeric layer on the substrate. The interfacial surface energy between the pretreatment composition-and air exceeds the interfacial surface energy between the imprint resist and air or between at least a component of the imprint resist and air.