Abstract:
The present application relates to a method for disposing of excess material of a photolithographic mask, wherein the method comprises the following steps: (a) enlarging a surface of the excess material; (b) displacing the enlarged excess material on the photolithographic mask using at least one first probe of a scanning probe microscope; and (c) removing the displaced enlarged excess material from the photolithographic mask.
Abstract:
The present invention relates to an apparatus for examining and/or processing a sample, said apparatus comprising: (a) a scanning particle microscope for providing a beam of charged particles, which can be directed on a surface of the sample; and (b) a scanning probe microscope with a deflectable probe; (c) wherein a detection structure is attached to the deflectable probe.
Abstract:
The present application relates to an apparatus for processing a photolithographic mask, said apparatus comprising: (a) at least one time-varying particle beam, which is embodied for a local deposition reaction and/or a local etching reaction on the photolithographic mask; (b) at least one first means for providing at least one precursor gas, wherein the precursor gas is embodied to interact with the particle beam during the local deposition reaction and/or the local etching reaction; and (c) at least one second means, which reduces a mean angle of incidence (φ) between the time-varying particle beam and a surface of the photolithographic mask.
Abstract:
A method for examining a specimen surface with a probe of a scanning probe microscope, the specimen surface having an electrical potential distribution. The method includes (a) determining the electrical potential distribution of at least one first partial region of the specimen surface; and (b) modifying the electrical potential distribution in the at least one first partial region of the specimen surface and/or modifying an electrical potential of the probe of the scanning probe microscope before scanning at least one second partial region of the specimen surface.
Abstract:
The invention refers to a method for analyzing a defect of an optical element for the extreme ultra-violet wavelength range comprising at least one substrate and at least one multi-layer structure, the method comprising the steps: (a) determining first data by exposing the defect to ultra-violet radiation, (b) determining second data by scanning the defect with a scanning probe microscope, (c) determining third data by scanning the defect with a scanning particle microscope, and (d) com-bining the first, the second and the third data.
Abstract:
The invention refers to a scanning particle microscope comprising: (a) at least one reference object which is fixedly arranged at an output of the scanning particle microscope for a particle beam so that the reference object can at least partially be imaged by use of the electron beam; (b) at least one scanning unit operable to scan a particle beam of the scanning particle microscope across at least one portion of the reference object; and (c) at least one setting unit operable to change at least one setting of the scanning particle microscope.
Abstract:
An apparatus for analyzing and/or processing a sample with a particle beam, comprising:
a sample stage for holding the sample; a providing unit for providing the particle beam comprising:
an opening for guiding the particle beam to a processing position on the sample; and a shielding element for shielding an electric field generated by charges accumulated on the sample; wherein the shielding element covers the opening, is embodied in sheetlike fashion and comprises an electrically conductive material; wherein the shielding element comprises a convex section, this section being convex in relation to the sample stage; and wherein the convex section has a through opening for the particle beam to pass through to the sample.
Abstract:
A method for particle beam-induced processing of a defect of a microlithographic photomask, including the steps of: a1) providing an image of at least a portion of the photomask, b1) determining a geometric shape of a defect in the image as a repair shape, c1) subdividing the repair shape into a number of n pixels in accordance with a first rasterization, d1) subdividing the repair shape into a number of m pixels in accordance with a second rasterization, the second rasterization emerging from a subpixel displacement of the first rasterization, e1) providing an activating particle beam and a process gas at each of the n pixels of the repair shape in accordance with the first rasterization, and f1) providing the activating particle beam and the process gas at each of the m pixels of the repair shape in accordance with the second rasterization.
Abstract:
The present invention relates to an apparatus for examining and/or processing a sample, said apparatus comprising: (a) a scanning particle microscope for providing a beam of charged particles, which can be directed on a surface of the sample; and (b) a scanning probe microscope with a deflectable probe; (c) wherein a detection structure is attached to the deflectable probe.
Abstract:
The present application relates to an apparatus for determining a position of at least one element on a photolithographic mask, said apparatus comprising: (a) at least one scanning particle microscope comprising a first reference object, wherein the first reference object is disposed on the scanning particle microscope in such a way that the scanning particle microscope can be used to determine a relative position of the at least one element on the photolithographic mask relative to the first reference object; and (b) at least one distance measuring device, which is embodied to determine a distance between the first reference object and a second reference object, wherein there is a relationship between the second reference object and the photolithographic mask.