Abstract:
A method for operating an aftertreatment system of an engine is disclosed. The method includes measuring, using one or more sensors, at least one operating parameter of the engine system; estimating, by a controller, a mass of hydrocarbon retained by an aftertreatment component using the at least one operating parameter; determining, by the controller, a percent load of hydrocarbon using the mass of hydrocarbon; comparing, by the controller, the percent load to a predetermined hydrocarbon load threshold; and providing at least one alert indicating a need to initiate a stepwise increase in an engine power to one or more predetermined engine speeds for one or more predetermined durations, if the percent load exceeds the predetermined hydrocarbon load threshold.
Abstract:
An aftertreatment system is disclosed. The aftertreatment system can include a hydrolysis catalyst disposed within a first canister adjacent to a downstream end of the first canister and a nozzle positioned to inject reductant into the first canister upstream of the hydrolysis catalyst. A particulate collection device, which may be catalyzed to promote NOX reduction in the presence of the reductant, can be disposed within a second canister of the aftertreatment system adjacent to an upstream end thereof. An exhaust conduit can extend from the downstream end of the first canister to the upstream end of the second canister. An interior volume within the exhaust conduit can extend from an upstream end adjacent to and in fluid communication with the hydrolysis catalyst to a downstream end adjacent to and in fluid communication with the particulate collection device.
Abstract:
An aftertreatment system is disclosed. The aftertreatment system can include a hydrolysis catalyst disposed within a first canister adjacent to a downstream end of the first canister and a nozzle positioned to inject reductant into the first canister upstream of the hydrolysis catalyst. A particulate collection device, which may be catalyzed to promote NOX reduction in the presence of the reductant, can be disposed within a second canister of the aftertreatment system adjacent to an upstream end thereof. An exhaust conduit can extend from the downstream end of the first canister to the upstream end of the second canister. An interior volume within the exhaust conduit can extend from an upstream end adjacent to and in fluid communication with the hydrolysis catalyst to a downstream end adjacent to and in fluid communication with the particulate collection device.
Abstract:
An aftertreatment system is disclosed. The aftertreatment system can include a hydrolysis catalyst disposed within a first canister adjacent to a downstream end of the first canister and a nozzle positioned to inject reductant into the first canister upstream of the hydrolysis catalyst. A particulate collection device, which may be catalyzed to promote NOX reduction in the presence of the reductant, can be disposed within a second canister of the aftertreatment system adjacent to an upstream end thereof. An exhaust conduit can extend from the downstream end of the first canister to the upstream end of the second canister. An interior volume within the exhaust conduit can extend from an upstream end adjacent to and in fluid communication with the hydrolysis catalyst to a downstream end adjacent to and in fluid communication with the particulate collection device.