Abstract:
A heat exchanger for an exhaust gas recirculation unit is provided. A tube core of the heat exchanger includes a plurality of coolant channels disposed between a plurality of exhaust gas tubes extending from an upstream face to a downstream face. A coolant inlet line and a first coolant outlet line is disposed in a first quarter section of the tube core defined between the upstream face and one fourth of a length of the tube core adjacent to the upstream face. The first coolant outlet line is configured to draw at least a portion of a coolant flow across the upstream face and into the first coolant outlet line. Further, a second coolant outlet line is provided and is configured to discharge a remaining portion of the coolant flow from the plurality of coolant channels that was not drawn out of the first coolant outlet line.
Abstract:
Apparatuses and methods are disclosed including heat exchanger for an internal combustion engine. The heat exchanger can include a main body, a manifold and one or more outlet ports. The main body can have an inlet and an outlet to receive/pass a coolant on a first side thereof. The main body can have a fluid inlet and fluid outlet configured to receive a fluid. The main body can pass the fluid in a heat exchange relationship with the coolant. The manifold can be coupled to the main body on a second side. The manifold can be in fluid communication with a main coolant outlet passage to receive a portion of the coolant from the main body. The one or more outlet ports can be fluidly connected to the manifold and passing the portion of the coolant to one or more engine auxiliary systems.
Abstract:
A heat exchanger for an exhaust gas recirculation system is provided, the heat exchanger including a tube core having a plurality of tubes extending from an upstream header of the tube core to a downstream header of the tube core and also having a plurality of coolant channels disposed between and separating the tubes, and a coolant inlet collar disposed about the tube core near the upstream header, the coolant inlet collar being comprised of at least two separately formed pieces that have been joined together.
Abstract:
A method for controlling an internal combustion engine cooling system includes pumping coolant in an engine cooling loop with a coolant pump, pumping the coolant in an air cooler loop that includes a liquid-to-liquid heat exchanger with the coolant pump, and receiving a condition signal indicative of at least one condition associated with the internal combustion engine. The method also includes, based on the condition signal, adjusting a position of a flow control valve to modify a flow of coolant to the liquid-to-liquid heat exchanger.
Abstract:
A cooling system includes an internal combustion engine, a coolant pump in fluid communication with the internal combustion engine, and a liquid-to-liquid heat exchanger configured to receive coolant from the internal combustion engine via the coolant pump. The cooling system also includes a bypass valve connected downstream of the coolant pump, the bypass valve configured to close a fluid path that connects the coolant pump and the liquid-to-liquid heat exchanger.
Abstract:
A coupling mechanism for a tie bar and a side sheet of an aftercooler is provided. The coupling mechanism includes a male portion of a mechanical joint. The male portion is coupled with a tail end of the tie bar. The coupling mechanism also includes a female portion of the mechanical joint defined within the side sheet. The male portion is adapted to mate with the female portion for coupling the tie bar with the side sheet.
Abstract:
A retention assembly for handling cyclical axial loads is disclosed. The retention assembly comprises a bearing, a motor, and a bushing element. The bearing is mounted around an axis of a shaft The motor is adapted to operate the shaft through a coupler. The bushing element is mounted around the axis of the shaft. The bushing element has a hollow cylindrical configuration defining an internal volume for accommodating the coupler and a portion of the shaft therein. An internal diameter of the bushing element is larger than an external diameter of each of the coupler and the shaft respectively. One end of the bushing element is in a contacting relationship with the bearing. The bushing element is adapted to hold the bearing in place through an interference fit with a motor housing ID for withstanding the cyclical axial loads.
Abstract:
A passive diverter fitting for a cooling system of an engine includes a base defining an interior cavity, an inlet opening extending through the base that is in fluid communication with the interior cavity, an outlet opening that is in fluid communication with the interior cavity, and a bypass opening that is in fluid communication with the interior cavity. The base is configured to be removably disposed in a cavity of an engine block. The inlet opening is positioned to receive coolant when the passive diverter fitting is disposed in the cavity of the engine block. The outlet opening is in fluid communication with the area exterior to the engine block when the passive diverter fitting is disposed in the cavity of the engine block. The bypass opening is in fluid communication with an interior coolant passage of the engine block when the passive diverter fitting is disposed in the cavity of the engine block.
Abstract:
A passive diverter fitting for a cooling system of an engine includes a base defining an interior cavity, an inlet opening extending through the base that is in fluid communication with the interior cavity, an outlet opening that is in fluid communication with the interior cavity, and a bypass opening that is in fluid communication with the interior cavity. The base is configured to be removably disposed in a cavity of an engine block. The inlet opening is positioned to receive coolant when the passive diverter fitting is disposed in the cavity of the engine block. The outlet opening is in fluid communication with the area exterior to the engine block when the passive diverter fitting is disposed in the cavity of the engine block. The bypass opening is in fluid communication with an interior coolant passage of the engine block when the passive diverter fitting is disposed in the cavity of the engine block.