摘要:
A system and method utilize a dual correlation, one for the synchronization pattern (sync correlation) and one for the channel equalization pattern (CE correlation), to determine where the channel equalization pattern starts and thus establish frame synchronization. The system and method compare the two correlations and decides on the start of the channel equalization symbols when the CE correlation is larger than the sync correlation.
摘要:
An ultra wideband receiver, based on multiband orthogonal frequency division multiplexing (MB-OFDM), combines digital data from multiple channels after signal processing and before decoding. The receiver provides a master controller that synthesizes packet synchronization, frame synchronization, and sampling frequency offset information from multiple channels into signals that simultaneously control all channels of the receiver.
摘要:
A system and method utilize a dual correlation, one for the synchronization pattern (sync correlation) and one for the channel equalization pattern (CE correlation), to determine where the channel equalization pattern starts and thus establish frame synchronization. The system and method compare the two correlations and decides on the start of the channel equalization symbols when the CE correlation is larger than the sync correlation.
摘要:
A method is presented for packet detection and symbol boundary location using a two-step sign correlation procedure. When the correlation crosses a threshold, a packet detection signal is generated to initiate processing of downstream blocks, and a symbol boundary location signal is generated for use in aligning data during processing.
摘要:
An ultra-wideband clear channel assessment system uses a double-window energy technique for energy detection, which indicates a clear or busy channel.
摘要:
An adaptive lossless data compression system with systolic string matching logic performs compression and decompression at the maximum rate of one symbol per clock cycle. The adaptive data compression system uses an improvement of the LZ1 algorithm. A content addressable memory (CAM) is used to store the last n input symbols. The CAM is stationary, stored data is not shifted throughout the CAM, but rather the CAM is used as a circular queue controlled by a Write Address Pointer Counter (WREN). During a compression operation, a new input symbol may be written to the CAM on each clock cycle, while simultaneously the rest of the CAM is searched for the input symbol. Associated with each word of the CAM array is a String Match State Machine (SMSM) and, an address logic module (ALM). These modules detect the occurrence of strings stored in the CAM array that match the current input string and report the address of the longest matching string nearest to the Write Address Pointer. The SMSM modules constitute a systolic logic array, where state information is shifted synchronously in the direction of the Write Address Pointer. The strings are represented by a string code which includes a length value, representing the length of the string, and a position value, representing the position in the CAM of the beginning of the string. During a decompression operation, the single symbols and string codes are input to the system. The symbols are stored in the CAM and the control logic outputs the decompressed data symbols using the stored data and the string codes.
摘要:
A system and method enable the fast decoding of a front end of data (e.g., a header) that is convolutionally encoded by treating the front end as a block code. The system and method receive the convolutionally encoded data; extract a finite sized block from the data; and decode the extracted block using a block error correction decoding method. A Viterbi decoder can then be used to decode the remainder of the encoded data based on the decoded block.
摘要:
A receiver sets weights for an antenna array according to a series of algorithms including an energy algorithm, a least squares algorithm and a least mean square algorithm.
摘要:
The present invention is for a Error Correction Unit (ECU) that uses a single stack architecture for the generation, reduction and evaluation of the polynomials involved in the correction of a Reed-Solomon code. The circuit uses the same hardware to generate the syndromes, reduce the .OMEGA.(x) and .LAMBDA.(x) polynomials and evaluate the .OMEGA.(x) and .LAMBDA.(x) polynomials. Some of the specifics involved in calculating and reducing the polynomials mentioned above are novel as well. First, the implementation of the general Galois field multiplier is new and faster than previous implementations. Second, the circuit for implementing the Galois field inverse function has not appeared in prior art designs. Third, a novel method of generating the .OMEGA.(x) and .LAMBDA.(x) polynomials (including alignment of these polynomials prior to evaluation) is utilized. Fourth, corrections are performed in the same order as they are received using a premultiplication step prior to evaluation. Fifth, a novel method of implementing flags for uncorrectable errors is used. Sixth, the ECU is data driven in that nothing happens if no data is present. Finally, interleaved data is handled internally to the chip.