摘要:
A vacuum-tight wafer carrier, and a load lock suitable for use with this wafer carrier. The wafers are supported at each side by a slightly sloping shelf, so that minimal contact (line contact) is made between the wafer surface and the surface of the shelf. This reduces generation of particulates by abrasion of the surface of the wafer. The carrier also contains elastic elements to restrain the wafers from rattling around, which further reduces the internal generation of particulates. When the wafer carrier is placed into the load lock, its body is lowered from beneath its cover through an aperture into a lower chamber, where wafers are loaded and unloaded under vacuum; the carrier cover remains covering the aperture into the lower chamber, so that the wafers never see any surface which is directly exposed to atmosphere. A wafer transport arm mechanism permits interchange of wafers among one or more processing stations and one or more load locks of this type.
摘要:
A vacuum-tight wafer carrier, and a load lock suitable for use with this wafer carrier. The wafers are supported at each side by a slightly sloping shelf, so that minimal contact (line contact) is made between the wafer surface and the surface of the shelf. This reduces generation of particulates by abrasion of the surface of the wafer. The carrier also contains elastic elements to restrain the wafers from rattling around, which further reduces the internal generation of particulates. When the wafer carrier is placed into the load lock, its body is lowered from beneath its cover through an aperture into a lower chamber, where wafers are loaded and unloaded under vacuum; the carrier cover remains covering the aperture into the lower chamber, so that the wafers never see any surface which is directly exposed to atmosphere. A wafer transport arm mechanism permits interchange of wafers among one or more processing stations and one or more load locks of this type.
摘要:
A complete integrated circuit processing module, wherein multiple processing stations, each with its own vacuum isolation, are located inside a single module which is held at hard vacuum. A wafer transport arm mechanism permits interchange of wafers among the processing stations and a load lock. The load lock is equipped to remove and replace wafers from a vacuum-sealed wafer carrier. The wafers remain face-down and under hard vacuum during all the wafers handling steps.
摘要:
A multi-zone illuminator for processing semiconductor wafers is described which comprises a plurality of source lamps and dummy lamps embedded in the reflector side of a lamp housing. The source lamps are arranged in a plurality of concentric circular zones. The illuminator also comprises plurality of light pipes for receiving multi-point temperature sensors to measure the semiconductor wafer temperature and its distribution uniformity. A gold-plated reflector plate is attached to the bottom side of the lamp housing for reflecting and directing optical energy toward the wafer surface. The distance between the reflector plate and the wafer and the lamps and the wafer may be adjusted with the use of a spacial elevator and adaptor assembly. The multi-zone illuminator allows uniform wafer heating during both transient and steady-state wafer heating cycles.
摘要:
A multi-zone illuminator for processing semiconductor wafers comprises a plurality of source lamps and dummy lamps embedded in the reflector side of a lamp housing. The source lamps are arranged in a plurality of concentric circular zones. The illuminator also comprises plurality of light pipes for receiving multi-point temperature sensors to measure the semiconductor wafer temperature and its distribution uniformity. A gold-plated reflector plate is attached to the bottom side of the lamp housing for reflecting and directing optical energy toward the wafer surface. The distance between the reflector plate and the wafer and the lamps and the wafer may be adjusted with the use of a spacial elevator and adaptor assembly. The multi-zone illuminator allows uniform wafer heating during both transient and steady-state wafer heating cycles.
摘要:
A vacuum-tight wafer carrier. The wafers are supported at each side by a slightly sloping shelf, so that minimal contact (line contact) is made between the wafer surface and the surface of the shelf. This reduces generation of particulates by abrasion of the surface of the wafer. The door of the vacuum carrier contains elastic elements to press the wafers lightly against the back of the carrier box. Thus, when the door of the box is closed, the wafers are restrained from rattling around, which further reduces the internal generation of particulates.
摘要:
A system for performing one semiconductor manufacturing operation or sequence of operations with reduced particulate contamination. A vacuum-tight wafer carrier, which contains numerous wafers in vacuum in a sealed box, is placed into a platform inside a vacuum load lock. The platform contains slots and protruding fingers to provide accurate registration of the position of the wafer carrier. After the load lock is pumped down, the door of the wafer carrier is opened, and a transfer arm removes wafers from the wafer carrier, in any desired order, and transfers them one by one through a port into a processing chamber.
摘要:
Apparatus include a communication interface, a trigger interface, computer-readable media encloded subscriber-originated recipient list data, and a user interface. The user interface is configured to display and receive input from, via a computer screen display, plural sets of screen-displayed destination setting selection indicators for individually configuring sets of destination settings for corresponding event types. Each set of destination settings corresponds to a corresponding one of plural selectable event types selectable for causing corresponding triggered messages to be sent including sending the given event-specific message to the corresponding list of recipients. Individual ones of the selectable event types for a given user have corresponding differently configurable sets of destination settings, whereby the given user's selected destination settings for one selected event type cause one event-specific message to be sent to one device of the given user and the given user's selected destination settings for another selected event type cause another event-specific message to be sent to another device of the given user that is different than the one device. Meanwhile, selected ones of the selectable event types for the given user are selected by a user selecting, via the computer screen display, destination selection indicators corresponding to the selected ones of the selectable event types.
摘要:
A self-locating mounting apparatus for holding objects such as sensors at specific positions on a subject's head includes a central mount constituted by a plurality of inextensible elements adapted to fit over the top of a subject's head. In addition, the mounting apparatus includes an adjustable circumferential band adapted to circle the subject's head and connect the central mount to inextensible side elements via sliding joints. A plurality of biasing elements provide a force for biasing sensor mounting units on the mounting apparatus against a subject's head, allowing for long-term sensing while minimizing interference forces on the mounting units. Advantageously, the mounting apparatus holds sensors within approximately 5 mm of their desired measurement positions over a range of subject head sizes.
摘要:
A non-invasive measurement system (110) for measuring the electrical potential of a voltage source (20, 120) includes a sensing electrode (50, 151) spaced from the voltage source (20, 120). Preferably the voltage source (20, 120) is within a biological cell (115) located in a nutrient bath (119) including electrolytic medium (117) and an object (30, 190) is a portion of the electrolytic fluid (117) located between the cell (115) and the sensing electrode (50, 151). A feedback electrode (181) is formed in an annular shape and surrounds the sensing electrode (50, 151) thus creating an annular fluid region therebetween. The value of the voltage in the annular region (131) is set substantially equal to the value of the voltage in the object (190) and therefore the impedance between the object (190) and a stray voltage source (40) is maximized.