摘要:
The invention provides a method and apparatus for allocating a dynamic band width of an EPON and an EPON master apparatus using the same. The bandwidth allocation is cycle based where every predetermined cycle, static gates are generated for all ONUs and dynamic gates are generated according to the reports using the remaining grant resource. The method for allocating an upstream bandwidth to transmit data from the ONUs to an OLT is as follows. A total allocatable grant length is calculated for the given cycle. A requested amount of grant length needed to transmit upstream data in each ONU is set based on report values collected from the report frames from all ONUs in the EPON. Then, distribution is made sequentially and repeatedly in a cycle by taking a basic unit from the total grant length and adding it to the grant length of the ONUs until the total allocatable grant length becomes 0 or the grant length allocated to all ONUs satisfy the requested amount of the grant length set in all ONUs.
摘要:
The invention relates to an EPON bridge apparatus and a forwarding method thereof. In a case of receiving a frame from the network port or the PON port, the apparatus associates the port having the received frame inputted with a source MAC address of the received frame to learn the information in an FDB table, which manages port information for the learned MAC address. Then the apparatus refers to the FDB table to remove an LLID from upstream frame, and then forwards the upstream frame to the network port, while attaching an LLID corresponding to a destination MAC address to the downstream frame to transmit to the PON port. Bridging between ONUs is possible with flooding capability using an anti-LLID. VLAN-LLID translation mode is provided with support for VLAN tag addition/removal at the ONU side. A multicast pruning function is provided for the downstream.
摘要:
The invention relates to an EPON bridge apparatus and a forwarding method thereof. In case of receiving frame from the network port or the PON port, the apparatus associates the port having the received frame inputted with source MAC address of the received frame to learn the information in an FDB table which manages port information for the learned MAC address. Then the apparatus refers to the FDB table to remove LLID from upstream frame, and then forwards the upstream frame to the network port, while attaching LLID corresponding to destination MAC address to downstream frame to transmit to the PON port. Bridging between ONUs are possible with flooding capability using anti-LLID. It provides VLAN-LLID translation mode with support for VLAN tag addition/removal at the ONU side. It also provides multicast pruning function for the downstream.
摘要:
A transimpedance amplifier for a burst mode optical communication converts a burst current signal into differential output voltage signals. Using a multi-level digital AGC mechanism, the transimpedance amplifier is rapidly adapted to a burst signal whose amplitude varies in a wide range. By using an adaptive level detection method, a multi-level digital AGC can be implemented without using ADC. In addition, because the transimpedance amplifier uses a selective reset generation scheme that performs a reset operation for itself after a high power burst, a burst mode operation can be performed without external reset signals. Accordingly, the transimpedance amplifier can be integrated with an optical detector within a TO-can. Furthermore, the transimpedance amplifier can have the burst mode capability and the best sensitivity.
摘要:
A transimpedance amplifier for a burst mode optical communication converts a burst current signal into differential output voltage signals. Using a multi-level digital AGC mechanism, the transimpedance amplifier is rapidly adapted to a burst signal whose amplitude varies in a wide range. By using an adaptive level detection method, a multi-level digital AGC can be implemented without using ADC. In addition, because the transimpedance amplifier uses a selective reset generation scheme that performs a reset operation for itself after a high power burst, a burst mode operation can be performed without external reset signals. Accordingly, the transimpedance amplifier can be integrated with an optical detector within a TO-can. Furthermore, the transimpedance amplifier can have the burst mode capability and the best sensitivity.
摘要:
A broadcast service provider must transmit broadcast programs by dynamically reflecting real-time reconfiguration of broadcast timetables and broadcast programs of a plurality of broadcast program providers and the broadcast service provider.A broadcast program providing apparatus and method for supporting dynamic delivery of program timetables and broadcast programs are provided. The apparatus includes a broadcast time organizer generating a third broadcast timetable by organizing broadcast times using a first broadcast timetable obtained by organizing broadcast times of first broadcast programs provided by a plurality of broadcast program providers or both the first broadcast timetable and a second broadcast timetable obtained by organizing broadcast times of second self-produced broadcast programs, and a broadcast program controller transmitting an exact broadcast program at an exact broadcast time according to the third broadcast timetable using the first broadcast programs received from the plurality of broadcast program providers or both the first broadcast programs and the second self-produced broadcast programs, which correspond to the third broadcast timetable. Thus, a broadcast service provider can transmit broadcast programs by dynamically reflecting real-time reconfiguration of broadcast timetables and broadcast programs of a plurality of broadcast program providers and the broadcast service provider.
摘要:
An optical communication system and method using Manchester encoded signal remodulation are provided. The optical communication system includes a transmitter generating and transmitting a Manchester encoded optical signal including a first data stream, and a receiver receiving an optical signal obtained by dividing power of the Manchester encoded optical signal into two parts and modulating one of the two parts to include a second data stream, and recovering the second data stream. In two-way communication, the optical communication system and method allow one party to generate and transmit a Manchester encoded signal (i.e., a downstream signal) to the other party and allow the other party to generate an upstream signal by modulating the optical power of the downstream signal without using a light source.
摘要:
In a Wavelength-Division-Multiplexed Passive Optical Network (WDM-PON) utilizing a conventional downstream optical signal reusing method, there is an inventory problem that different optical transmitter types need to be provided for the operation, management, replacement, etc. of a system. A WDM-PON system according to the present invention, includes: a seed light (SL) unit generating a seed light whose wavelength intervals and center wavelengths are adjusted using at least one seed light source; an optical line terminal (OLT) receiving the wavelength-multiplexed seed light from the seed light unit, transmitting a downstream optical signal to a subscriber of the WDM-PON, and receiving a upstream optical signal from the subscriber; and an optical network unit (ONU) receiving the downstream optical signal from the OLT, flattening and modulating the downstream optical signal with upstream data so that the downstream optical signal is reused for carrying upstream data. It is possible to improve the quality and reliability of downstream transmission by sufficiently increasing an extinction ratio, and improve the quality and reliability of upstream transmission by sufficiently flattening an input downstream optical signal in a semiconductor optical amplifier.
摘要:
Provided are a sing-unit integrated transceiver having a pump source and a transceiver module using the transceiver. The single-unit integrated transceiver includes: an optical transmitter converting an input electric signal into a downstream optical signal; an optical receiver converting a received upstream optical signal into an electric signal; the pump source amplifying the downstream or upstream optical signal using a gain medium positioned in an optical transmission line to amplify an output optical signal; a convergence unit arranging or converging the downstream and upstream optical signals to/from the optical transmission line; and a multiplexing and/or a demultiplexing filter, the multiplexing filter positioned on an optical path between the optical transmitter/pump source and the convergence unit, and multiplexing the downstream optical signal and the amplified optical signal to pass to the convergence unit, the demultiplexing filter positioned on an optical path between the convergence unit and the optical receiver and demultiplexing the upstream optical signal to pass to the optical receiver.
摘要:
An Internet broadcasting system and a method thereof are provided. The Internet broadcasting system includes: a signal converter for converting a received analog broadcasting signal into a digital broadcasting data; an Internet broadcasting unit for storing and sending the digital broadcasting data; a repeater for relaying the digital broadcasting data to a switching unit connected with a terminal according to a broadcasting request message inputted from the terminal but selectively relaying a channel selected by the terminal by referring to a first multicasting forwarding table created by using a UDP port number extracted from the broadcasting request message; and the switching unit for snooping on the broadcasting request message, extracting the UDP port number, storing the extracted UDP port number into a second multicasting forwarding table, and transmitting the digital broadcasting data of the selected channel to the corresponding terminal referring to an entry of the second multicasting forwarding table.