摘要:
An electrically programmable transistor fuse having a double-gate arrangement disposed in a single layer of polysilicon in which a first gate is disposed overlapping a portion of a source region and a second gate is insulated from the first gate and disposed overlapping a portion of a drain region. The first gate includes a terminal for receiving an externally applied control signal and the second gate is capacitively couple to the drain region in which a coupling device is included for increasing the capacitive coupling of the second gate and the drain region for enabling reduction in fuse programming voltage.
摘要:
An electrically programmable transistor fuse having a double-gate arrangement disposed in a single layer of polysilicon in which a first gate is disposed overlapping a portion of a source region and a second gate is insulated from the first gate and disposed overlapping a portion of a drain region. The first gate includes a terminal for receiving an externally applied control signal and the second gate is capacitively couple to the drain region in which a coupling device is included for increasing the capacitive coupling of the second gate and the drain region for enabling reduction in fuse programming voltage.
摘要:
Flash memory device structures and methods of manufacture thereof are disclosed. The flash memory devices are manufactured on silicon-on-insulator (SOI) substrates. Shallow trench isolation (STI) regions and the buried oxide layer of the SOI substrate are used to isolate adjacent devices from one another. The methods of manufacture require fewer lithography masks and may be implemented in stand-alone flash memory devices, embedded flash memory devices, and system on a chip (SoC) flash memory devices.
摘要:
A method of fabricating a memory device in a semiconductor substrate, the device having a memory array having a plurality of memory cell transistors arranged in rows and columns. The method includes forming a plurality of tunneling field effect transistors, forming a first well of the second doping type, forming a second well of the first doping type surrounding the first well, forming a first word line connected to a first row of memory cell transistors, forming a first bit line to control a voltage of doped drain regions of tunneling field effect transistors of a first column of memory cell transistors, and forming a second bit line parallel to the first bit line.
摘要:
In a method of forming a semiconductor device, a wafer includes a first semiconductor region of a first crystal orientation and a second semiconductor region of a second crystal orientation. Insulating material is formed over the wafer. A first portion of the insulating material is removed to expose the first semiconductor region and a second portion of the insulating material is removed to expose the second semiconductor region. Semiconductor material of the first crystal orientation is epitaxially grown over the exposed first semiconductor region and semiconductor material of the second crystal orientation is epitaxially grown over the exposed second semiconductor region
摘要:
An integrated circuit has a high voltage area, a logic area and a memory array for forming a system on a chip that includes linear, logic and memory devices. The memory array has floating gate transistors disposed in a triple well structure with a raised drain bit line 13 substantially vertically aligned with a buried source bit line 14. The memory array separates the columns with deep trenches 46 that may also be formed into charge pump capacitors.
摘要:
The invention relates to a bit line structure having a surface bit line (DLx) and a buried bit line (SLx), the buried bit line (SLx) being formed in a trench with a trench insulation layer (6) and being connected to doping regions (10) with which contact is to be made via a covering connecting layer (12) and a self-aligning terminal layer (13) in an upper partial region of the trench.
摘要:
A method for making a NMOS self-aligned contact in CMOS circuits without an extra mask is described. The maskless contact technique makes use of the fact that the blanket N-type implant, self-aligned to exposed field-oxide edge, will not change the P+ diffusion to N-type. The net P+ concentration in the contact region is reduced slightly but does not degrade the PMOS device performance.
摘要:
A memory device using tunneling field effect transistors (TFET) and buried bit lines is presented. The memory device includes a matrix containing rows and columns of storage cells. Each storage cell contains at least one cell transistor, which in turn contains first doped regions and second doped regions, one of which is a source and the other a drain. The memory device includes word lines, each of which is connected to storage cells of one row and bit lines, each of which is connected to storage cells of one column. The first doped regions are of a different doping type than the second doped regions.
摘要:
A memory device using tunneling field effect transistors (TFET) and buried bit lines is presented. The memory device includes a matrix containing rows and columns of storage cells. Each storage cell contains at least one cell transistor, which in turn contains first doped regions and second doped regions, one of which is a source and the other a drain. The memory device includes word lines, each of which is connected to storage cells of one row and bit lines, each of which is connected to storage cells of one column. The first doped regions are of a different doping type than the second doped regions.