Abstract:
An array substrate for a liquid crystal display device includes a substrate, a gate line on the substrate, a data line crossing the gate line to define a pixel region, a thin film transistor connected to the gate line and the data line and including a gate electrode, an active layer, an ohmic contact layer, a buffer metallic layer, a source electrode and a drain electrode, and a pixel electrode in the pixel region and connected to the thin film transistor, wherein the data line includes a transparent conductive layer and an opaque conductive layer, and each of the source and drain electrodes and the pixel electrode includes a transparent conductive layer.
Abstract:
An array substrate for an in-plane switching mode liquid crystal display device includes: a gate line on a substrate; a data line crossing the gate line to define a pixel region on the substrate; a common line parallel to and spaced apart from the gate line; a gate electrode connected to the gate line; a semiconductor layer disposed over the gate electrode, wherein an area of the semiconductor layer is less than an area of the gate electrode; a source electrode connected to the data line, and a drain electrode spaced apart from the source electrode, the source and drain electrodes disposed on the semiconductor layer; a plurality of pixel electrodes integrated with the drain electrode and extending from the drain electrode in the pixel region; and a plurality of common electrodes connected to the common line and alternately arranged with the plurality of pixel electrodes, wherein each of the source electrode, the drain electrode, the data line and the plurality of pixel electrodes are comprised from a first conductive material layer and a second conductive material layer, wherein the second conductive material layer is disposed on the first conductive material layer.
Abstract:
An array substrate for a liquid crystal display device includes a substrate, a gate line on the substrate, a data line crossing the gate line to define a pixel region, a thin film transistor including a gate electrode, an active layer, an ohmic contact layer, a buffer metallic layer, a source electrode and a drain electrode, the thin film transistor being electrically connected to the gate line and the data line and a pixel electrode in the pixel region and connected to the thin film transistor, wherein the active layer is disposed over and within the gate electrode.
Abstract:
An array substrate for a liquid crystal display device includes a gate and a data lines on a substrate intersecting each other, the data line includes a first layer formed of a transparent conductive material and a second layer under the first layer; a thin film transistor including a gate electrode connected to the gate line formed at respective intersection of the gate and data lines, an insulating layer on the gate electrode, an active layer on the insulating layer disposed within the gate electrode, an etch stopper on the active layer, an ohmic contact layer on the etch stopper, a source electrode on the ohmic contact layer and connected to the first layer, a drain electrode spaced apart from the source electrode; a pixel electrode connected to the drain electrode, wherein the source, drain and pixel electrodes are formed of the same layer and material as the first layer.
Abstract:
An array substrate for an in-plane switching mode liquid crystal display device includes: a gate line on a substrate; a data line crossing the gate line to define a pixel region on the substrate; a common line parallel to and spaced apart from the gate line; a gate electrode connected to the gate line; a semiconductor layer disposed over the gate electrode, wherein an area of the semiconductor layer is less than an area of the gate electrode; a source electrode connected to the data line, and a drain electrode spaced apart from the source electrode, the source and drain electrodes disposed on the semiconductor layer; a plurality of pixel electrodes integrated with the drain electrode and extending from the drain electrode in the pixel region; and a plurality of common electrodes connected to the common line and alternately arranged with the plurality of pixel electrodes, wherein each of the source electrode, the drain electrode, the data line and the plurality of pixel electrodes are comprised from a first conductive material layer and a second conductive material layer, wherein the second conductive material layer is disposed on the first conductive material layer.
Abstract:
An array substrate for a liquid crystal display device includes a gate and a data lines on a substrate intersecting each other, the data line includes a first layer formed of a transparent conductive material and a second layer under the first layer; a thin film transistor including a gate electrode connected to the gate line formed at respective intersection of the gate and data lines, an insulating layer on the gate electrode, an active layer on the insulating layer disposed within the gate electrode, an etch stopper on the active layer, an ohmic contact layer on the etch stopper, a source electrode on the ohmic contact layer and connected to the first layer, a drain electrode spaced apart from the source electrode; a pixel electrode connected to the drain electrode, wherein the source, drain and pixel electrodes are formed of the same layer and material as the first layer.
Abstract:
A liquid crystal display (LCD) includes: a first substrate divided into a pixel part and first and second pad parts; a gate electrode and a gate line formed at the pixel part of the first substrate; an active pattern formed as an island on the gate electrode and having a width smaller than the gate electrode; an insulation film formed on the first substrate and having first and second contact holes exposing source and drain regions of the active pattern, respectively; source and drain electrodes formed at the pixel part of the first substrate and electrically connected with the source and drain regions of the active pattern via the first and second contact holes; a data line formed at the pixel part of the first substrate and crossing the gate line to define a pixel region; an etch stopper positioned between the source and drain electrodes and formed as an insulation film; a pixel electrode electrically connected with the drain electrode; and a second substrate attached with the first substrate in a facing manner.
Abstract:
A method of manufacturing an array substrate for a liquid crystal display device includes forming a gate electrode and a gate line on a substrate through a first mask process, forming a first insulating layer, an active layer, an ohmic contact layer, a buffer metallic layer, and a data line on the substrate including the gate electrode and the gate line through a second mask process, and forming a source electrode, a drain electrode, and a pixel electrode through a third mask process, the pixel electrode extending from the drain electrode, wherein the active layer is disposed over and within the gate electrode.
Abstract:
An array substrate for a liquid crystal display device includes a substrate, a gate line on the substrate, a data line crossing the gate line to define a pixel region, a thin film transistor connected to the gate line and the data line and including a gate electrode, an active layer, an ohmic contact layer, a buffer metallic layer, a source electrode and a drain electrode, and a pixel electrode in the pixel region and connected to the thin film transistor, wherein the data line includes a transparent conductive layer and an opaque conductive layer, and each of the source and drain electrodes and the pixel electrode includes a transparent conductive layer.
Abstract:
An array substrate for a liquid crystal display device includes a substrate, a gate line on the substrate, a data line crossing the gate line to define a pixel region, a thin film transistor including a gate electrode, an active layer, an ohmic contact layer, a buffer metallic layer, a source electrode and a drain electrode, the thin film transistor being electrically connected to the gate line and the data line and a pixel electrode in the pixel region and connected to the thin film transistor, wherein the active layer is disposed over and within the gate electrode.