摘要:
A method of operating a scanning probe microscope includes using a probe having a cantilever, and oscillating the probe at a torsional resonance frequency thereof. In addition, the method includes substantially increasing torsional drive efficiency with dual actuators disposed on the probe or the probe base. First and second actuators may be driven by corresponding first and second drive signals, the first and second drive signals being about 180° out of phase. The maximizing step includes altering at least one of the amplitudes of the first and second drive signals to maximize torsional oscillation. Torsional and flexural oscillation of the cantilever probe can be excited concurrently, sequentially or independently by adjusting the phase of the corresponding drive signals. A pair of cantilever components can be used to form a nanotweezer by rotating the respective arms having corresponding tip portions at the distal ends.
摘要:
A method of operating a scanning probe microscope includes using a probe having a cantilever, and oscillating the probe at a torsional resonance frequency thereof. In addition, the method includes substantially increasing torsional drive efficiency with dual actuators disposed on the probe or the probe base. First and second actuators may be driven by corresponding first and second drive signals, the first and second drive signals being about 180° out of phase. The maximizing step includes altering at least one of the amplitudes of the first and second drive signals to maximize torsional oscillation. Torsional and flexural oscillation of the cantilever probe can be excited concurrently, sequentially or independently by adjusting the phase of the corresponding drive signals. A pair of cantilever components can be used to form a nanotweezer by rotating the respective arms having corresponding tip portions at the distal ends.
摘要:
An improved mode of AFM imaging (Peak Force Tapping (PFT) Mode) uses force as the feedback variable to reduce tip-sample interaction forces while maintaining scan speeds achievable by all existing AFM operating modes. Sample imaging and mechanical property mapping are achieved with improved resolution and high sample throughput, with the mode being workable across varying environments, including gaseous, fluidic and vacuum. Ease of use is facilitated by eliminating the need for an expert user to monitor imaging.
摘要:
An improved mode of AFM imaging (Peak Force Tapping (PFT) Mode) uses force as the feedback variable to reduce tip-sample interaction forces while maintaining scan speeds achievable by all existing AFM operating modes. Sample imaging and mechanical property mapping are achieved with improved resolution and high sample throughput, with the mode being workable across varying environments, including gaseous, fluidic and vacuum. Ease of use is facilitated by eliminating the need for an expert user to monitor imaging.
摘要:
A method includes determining the point at which a tip of a probe based instrument contacts a sample and/or the area of that contact by dynamically oscillating a cantilever of the instrument in flexural and/or torsional modes. The method additionally includes using oscillation characteristics, such as amplitude, phase, and resonant frequency, to determine the status of the contact and to provide quantitative data. Static and quasi-static measurements, including contact stiffness and elastic modulus, can be obtained from the thus obtained data. Quasistatic measurements, such as creep and viscoelastic modulus, can be obtained by repeating the static measurements for a number of force profiles at different force application rates and correlating the resultant data using known theories.
摘要:
A method and apparatus are provided that have the capability of rapidly scanning a large sample of arbitrary characteristics under force control feedback so has to obtain a high resolution image. The method includes generating relative scanning movement between a probe of the SPM and a sample to scan the probe through a scan range of at least 4 microns at a rate of at least 30 lines/sec and controlling probe-sample interaction with a force control slew rate of at least 1 mm/sec. A preferred SPM capable of achieving these results has a force controller having a force control bandwidth of at least closed loop bandwidth of at least 10 kHz.
摘要:
A probe instrument having a probe that interacts with a sample surface to perform a mechanical property measurement at high speed includes a scanner producing relative motion between the sample and the probe. In addition, a probe actuator produces relative motion between the sample and the probe, in a generally vertical direction, and a controller that generates a scanner drive signal and an actuator drive signal. The probe actuator is responsive to the actuator drive signal and has an operable bandwidth of at least about 50-80 kHz to perform the fast force curve measurements. The probe actuator is preferably located at least partially on the cantilever. Moreover, feedback during normal operation may be interrupted to perform a force curve measurement with the integrated actuator.
摘要:
Apparatus and method for nano-identification a sample by measuring, with the use of evanescent waves, optical spectra of near-field interaction between the sample and optical nanoantenna oscillating at nano-distance above the sample and discriminating background backscattered radiation not sensitive to such near-field interaction. Discrimination may be effectuated by optical data acquisition at periodically repeated moments of nanoantenna oscillation without knowledge of distance separating nanoantenna and sample. Measurement includes chemical identification of sample on nano-scale, during which absolute value of phase corresponding to near-field radiation representing said interaction is measured directly, without offset. Calibration of apparatus and measurement is provided by performing, prior to sample measurement, a reference measurement of reference sample having known index of refraction. Nano-identification is realized with sub-50 nm resolution and optionally, in the mid-infrared portion of the spectrum.
摘要:
An improved mode of AFM imaging (Peak Force Tapping (PFT) Mode) uses force as the feedback variable to reduce tip-sample interaction forces while maintaining scan speeds achievable by all existing AFM operating modes. Sample imaging and mechanical property mapping are achieved with improved resolution and high sample throughput, with the mode being workable across varying environments, including gaseous, fluidic and vacuum. Ease of use is facilitated by eliminating the need for an expert user to monitor imaging.
摘要:
A method and apparatus are provided that have the capability of rapidly scanning a large sample of arbitrary characteristics under force control feedback so has to obtain a high resolution image. The method includes generating relative scanning movement between a probe of the SPM and a sample to scan the probe through a scan range of at least 4 microns at a rate of at least 30 lines/sec and controlling probe-sample interaction with a force control slew rate of at least 1 mm/sec. A preferred SPM capable of achieving these results has a force controller having a force control bandwidth of at least closed loop bandwidth of at least 10 kHz.