Systems and methods for self-reduction of iron ore

    公开(公告)号:US12252753B2

    公开(公告)日:2025-03-18

    申请号:US18409428

    申请日:2024-01-10

    Abstract: Disclosed herein, in some aspects, are systems and methods for producing a material comprising iron through self-reduction of iron ore using bio-oil and/or other reducing agents (e.g., bio-based reducing agents), such as biocrude, ethanol, or other bio-based liquids or biologically sourced liquids. The bio-oil and/or other reducing agents can be mixed with the iron ore to form a furnace mixture, which can be heated, such that the components of the bio-oil and/or other reducing agents in the furnace mixture reduce the iron ore to form an iron product (e.g., a material that includes metallic iron). In some cases, the pre-formed furnace mixture allows for the reducing agents to interact with the iron more readily, thereby providing for quicker reaction rates, and thereby quicker reduction of iron ore, as compared to direct reduction iron production.

    Systems and methods for producing syngas from bio-oil

    公开(公告)号:US12180074B2

    公开(公告)日:2024-12-31

    申请号:US18503036

    申请日:2023-11-06

    Abstract: Disclosed herein are systems and methods for producing synthesis gas (syngas) using bio-oil. In some embodiments, syngas is produced by steam reforming bio-oil. In some embodiments, the bio-oil is provided in liquid form. In some embodiments at least some of the liquid bio-oil is transitioned into droplet form when entering a reformer for steam-reforming. In some embodiments, the reformer produces a gas stream comprising syngas, which may be fed to a furnace (e.g., direct reducing furnace, shaft furnace) for reducing iron ore to iron. In some embodiments, the amount of oxygen provided to the reformer is regulated based on an equivalence ratio (ER) corresponding to moles of oxygen fed to the reformer divided by moles of oxygen necessary to achieve stoichiometric combustion of the bio-oil, wherein an exemplary ER value is from about 0.1 to about 0.6.

    SYSTEMS AND METHODS FOR PRODUCING SYNGAS FROM BIO-OIL

    公开(公告)号:US20250091863A1

    公开(公告)日:2025-03-20

    申请号:US18970040

    申请日:2024-12-05

    Abstract: Disclosed herein are systems and methods for producing synthesis gas (syngas) using bio-oil. In some embodiments, syngas is produced by steam reforming bio-oil. In some embodiments, the bio-oil is provided in liquid form. In some embodiments at least some of the liquid bio-oil is transitioned into droplet form when entering a reformer for steam-reforming. In some embodiments, the reformer produces a gas stream comprising syngas, which may be fed to a furnace (e.g., direct reducing furnace, shaft furnace) for reducing iron ore to iron. In some embodiments, the amount of oxygen provided to the reformer is regulated based on an equivalence ratio (ER) corresponding to moles of oxygen fed to the reformer divided by moles of oxygen necessary to achieve stoichiometric combustion of the bio-oil, wherein an exemplary ER value is from about 0.1 to about 0.6.

    SYSTEMS AND METHODS FOR SELF-REDUCTION OF IRON ORE

    公开(公告)号:US20240229176A1

    公开(公告)日:2024-07-11

    申请号:US18409428

    申请日:2024-01-10

    CPC classification number: C21C7/0025 C21C2007/0031 C21C2100/02

    Abstract: Disclosed herein, in some aspects, are systems and methods for producing a material comprising iron through self-reduction of iron ore using bio-oil and/or other reducing agents (e.g., bio-based reducing agents), such as biocrude, ethanol, or other bio-based liquids or biologically sourced liquids. The bio-oil and/or other reducing agents can be mixed with the iron ore to form a furnace mixture, which can be heated, such that the components of the bio-oil and/or other reducing agents in the furnace mixture reduce the iron ore to form an iron product (e.g., a material that includes metallic iron). In some cases, the pre-formed furnace mixture allows for the reducing agents to interact with the iron more readily, thereby providing for quicker reaction rates, and thereby quicker reduction of iron ore, as compared to direct reduction iron production.

Patent Agency Ranking