Method and Framework for Internet of Things Network Security

    公开(公告)号:US20210392170A1

    公开(公告)日:2021-12-16

    申请号:US16897597

    申请日:2020-06-10

    Abstract: A method for Internet of Things (IoT) network security includes collecting information for each network device (device), determining a minimum viable resource allocation for each device based on the information, which defines the minimum resources needed by each device to engage the IoT network and handle data, and for each device, distributing minimum viable resource allocations and rules, determining monitoring sets, monitoring using the monitoring set, collecting updated information based partially on the monitoring set, analyzing the updated information to determine trends and insights relative to the devices and the IoT network, updating the monitoring set, minimum viable resource allocation, and rules based on the analyzed updated information, checking compliance with a current minimum viable resource allocation and rules, identifying devices having violations, and performing same on a continuous as it and automatic basis. The method establishes and maintains a chain of custody for data traversing through multiple network segments.

    Methods and apparatus for coordinated utilization of quasi-licensed wireless spectrum

    公开(公告)号:US11190232B2

    公开(公告)日:2021-11-30

    申请号:US16459364

    申请日:2019-07-01

    Abstract: Methods and apparatus for providing quasi-licensed spectrum access within a prescribed area or venue, including to users or subscribers of one or more Mobile Network Operators (MNOs). In one embodiment, the quasi-licensed spectrum utilizes 3.5 GHz CBRS (Citizens Broadband Radio Service) spectrum allocated by a Federal or commercial SAS (Spectrum Access System) to a managed content delivery network that includes one or more wireless access nodes (e.g., CBSDs) in data communication with a controller, and the core(s) of the MNO network(s). In one variant, the controller dynamically allocates (i) spectrum within the area or venue within CBRS bands, and (ii) MNO “roaming” users or subscribers to CBRS bands (e.g., via extant LTE-TD technology). In one particular implementation, the managed network comprises a Multiple Systems Operator (MSO) network such as a cable or satellite network, and the MSO and MNO coordinate to implement user-specific and/or data-specific policies for the roaming MNO subscribers.

    METHODS AND APPARATUS FOR ALLOCATION AND RECONCILIATION OF QUASI-LICENSED WIRELESS SPECTRUM ACROSS MULTIPLE ENTITIES

    公开(公告)号:US20190223025A1

    公开(公告)日:2019-07-18

    申请号:US15902833

    申请日:2018-02-22

    CPC classification number: H04W16/14 H04W72/0453 H04W72/10

    Abstract: Methods and apparatus for providing quasi-licensed spectrum allocation among two or more entities within a prescribed coverage or operational area. In one embodiment, the quasi-licensed spectrum utilizes 3.5 GHz CBRS (Citizens Broadband Radio Service) spectrum allocated between two or more Federal or commercial SASs (Spectrum Access Systems), for use by various service provider entities such as a managed content delivery network that includes one or more wireless access nodes (e.g., CBSDs). In one variant, each of two or more SAS entities generate both proposed allocations for themselves and other participating SAS entities with respect to available GAA spectrum, and differences between the proposed allocations are reconciled and condensed using a dynamic, iterative process to converge on a final allocation which fits the available GAA spectrum and which equitably distributes the spectrum between the participating SAS entities.

    Method and Framework for Internet of Things Network Security

    公开(公告)号:US20220131905A1

    公开(公告)日:2022-04-28

    申请号:US17572782

    申请日:2022-01-11

    Abstract: A method for Internet of Things (IoT) network security includes collecting information for each network device (device), determining a minimum viable resource allocation for each device based on the information, which defines the minimum resources needed by each device to engage the IoT network and handle data, and for each device, distributing minimum viable resource allocations and rules, determining monitoring sets, monitoring using the monitoring set, collecting updated information based partially on the monitoring set, analyzing the updated information to determine trends and insights relative to the devices and the IoT network, updating the monitoring set, minimum viable resource allocation, and rules based on the analyzed updated information, checking compliance with a current minimum viable resource allocation and rules, identifying devices having violations, and performing same on a continuous as it and automatic basis. The method establishes and maintains a chain of custody for data traversing through multiple network segments.

Patent Agency Ranking