Abstract:
A method for forming a trimmed upper pole piece for a magnetic write head, said pole piece having a uniform width above and below a write gap layer. Prior art methods of trimming pole pieces to a final width using ion-beam etches produce pole pieces with thickness differentials due to the etch resistant nature of the alumina write-gap filling material. The present method uses NiCr, NiFeCr or Ru as write gap filling materials which have an etch rate which is substantially equal to the etch rate of the other layers forming the pole piece and are highly corrosion resistant.
Abstract:
A trimmed upper pole piece for a magnetic write head is presented, said pole piece having a uniform width above and below a write gap layer and said pole piece being formed on a pedestal of uniform width projecting from a planar surface of a magnetic shield layer. Prior art methods of trimming pole pieces to a final width using ion-beam etches produce pole pieces with thickness differentials due to the etch resistant nature of the typical alumina write-gap filling material. The present pole piece uses NiCr, NiFeCr or Ru as write gap filling materials because they have an etch rate which is substantially equal to the etch rate of the other layers forming the pole piece and allow a uniform trimming to occur.
Abstract:
A method for forming a trimmed upper pole piece for a magnetic write head, said pole piece having a tapered profile that is widest at its trailing edge. Such a pole piece is capable of writing narrow tracks with sharply and well defined patterns and minimal overwriting of adjacent tracks. The present method produces the necessary taper by using NiCr, NiFeCr, Rh or Ru as write gap filling materials which have an etch rate which is substantially equal to the etch rate of the other layers forming the pole piece and are highly corrosion resistant. As a result, the write gap does not protrude to mask the effects of the ion-beam etch used to form the taper.
Abstract:
A method for forming a trimmed upper pole piece for a magnetic write head, said pole piece having a uniform width above and below a write gap layer. Prior art methods of trimming pole pieces to a final width using ion-beam etches produce pole pieces with thickness differentials due to the etch resistant nature of the alumina write-gap filling material. The present method uses NiCr, NiFeCr or Ru as write gap filling materials which have an etch rate which is substantially equal to the etch rate of the other layers forming the pole piece and are highly corrosion resistant.
Abstract:
A trimmed upper pole piece for a magnetic write head, said pole piece having a tapered profile that is widest at its trailing edge. Such a pole piece is capable of writing narrow tracks with sharply and well defined patterns and minimal overwriting of adjacent tracks. The necessary taper is produced by using NiCr, NiFeCr, Rh or Ru as write gap filling materials which have an etch rate which is substantially equal to the etch rate of the other layers forming the pole piece and are highly corrosion resistant. As a result, the write gap does not protrude to mask the effects of the ion-beam etch used to form the taper.
Abstract:
A trimmed upper pole piece for a magnetic write head, said pole piece having a tapered profile that is widest at its trailing edge. Such a pole piece is capable of writing narrow tracks with sharply and well defined patterns and minimal overwriting of adjacent tracks. The necessary taper is produced by using NiCr, NiFeCr, Rh or Ru as write gap filling materials which have an etch rate which is substantially equal to the etch rate of the other layers forming the pole piece and are highly corrosion resistant. As a result, the write gap does not protrude to mask the effects of the ion-beam etch used to form the taper.
Abstract:
A perpendicular magnetic recording (PMR) head has a pole tip shielded laterally by a separated pair of bottom side shields and shielded from above by an upper shield. The bottom side shields surround a lower portion of the pole tip while the upper portion of the pole tip is surrounded by non-magnetic layers. The bottom shields and the non-magnetic layer form a wedge-shaped trench in which the pole tip has been formed by a self-aligned plating process. A write gap layer and an upper shield is formed above the side shields and pole. The resulting structure substantially eliminates track overwrite while maintaining good track definition.
Abstract:
A perpendicular magnetic recording (PMR) head has a pole tip shielded laterally by a separated pair of bottom side shields and shielded from above by an upper shield. The bottom side shields surround a lower portion of the pole tip while the upper portion of the pole tip is surrounded by non-magnetic layers. The bottom shields and the non-magnetic layer form a wedge-shaped trench in which the pole tip has been formed by a self-aligned plating process. A write gap layer and an upper shield is formed above the side shields and pole. The resulting structure substantially eliminates track overwrite while maintaining good track definition.
Abstract:
A perpendicular magnetic recording (PMR) head is fabricated with a pole tip shielded laterally by a separated pair of bottom side shields and shielded from above by an upper shield. The bottom side shields surround a lower portion of the pole tip while the upper portion of the pole tip is surrounded by non-magnetic layers. The bottom shields and the non-magnetic layer form wedge-shaped trench in which the pole tip is formed by a self-aligned plating process. The wedge shape is formed by a RIE process using specific gases applied through a masking layer formed of material that has a slower etch rate than the non-magnetic material or the shield material. A masking layer of Ta, Ru/Ta, TaN or Ti, formed on a non-magnetic layer of alumina that is formed on a shield layer of NiFe and using RIE gases of CH3OH, CO or NH3 or their combinations, produces the desired result. A write gap layer and an upper shield is then formed above the side shields and pole. The resulting structure substantially eliminates track overwrite while maintaining good track definition.
Abstract:
A process for forming the write pole of a PMR head is described. This write pole is symmetrically located relative to its side shields, This is accomplished, not through optical alignment, but by coating the pole with a uniform layer of non-magnetic material of a predetermined and precise thickness, followed by the formation of the shield layer around this.