摘要:
An optical etching device for laser machining is provided and includes a laser light source and an optical head. The laser light source emits an incident beam. The optical head includes a transparent substrate, an opaque film and a sub-wavelength annular channel. The laser energy tolerance of the transparent substrate ranges from 8 J/cm2 to 12 J/cm2. The opaque film has a first surface and a second surface opposite to the first surface. The transparent substrate is adhered to the first surface. The sub-wavelength annular channel is formed in the opaque film and extends from the first surface to the second surface so that the incident beam from the transparent substrate generates a surface plasma wave on the opaque film.
摘要翻译:提供了一种用于激光加工的光刻蚀装置,包括激光光源和光头。 激光光源发射入射光束。 光头包括透明基板,不透明膜和亚波长环形通道。 透明基板的激光能量容差为8J / cm 2〜12J / cm 2。 不透明膜具有与第一表面相对的第一表面和第二表面。 透明基板粘附到第一表面。 亚波长环形通道形成在不透明膜中并且从第一表面延伸到第二表面,使得来自透明基板的入射光束在不透明膜上产生表面等离子体波。
摘要:
A micro optical head is provided, which provides sub-wavelength focusing spot and very long depth of focus. The optical head includes a transparent substrate, an opaque film, and at least one sub-wavelength annular channel. After coherent light transmits the transparent substrate supporting the optical head and passes through the appropriately designed sub-wavelength annular channel, the transmitted light can overcome the diffraction limit, and the transmission energy is improved efficiently. The transmitted light converges after a certain distance behind the optical head and forms a sub-wavelength-scale beam that maintains a very long distance without divergence.
摘要:
A micro optical head is provided, which provides sub-wavelength focusing spot and very long depth of focus. The optical head includes a transparent substrate, an opaque film, and at least one sub-wavelength annular channel. After coherent light transmits the transparent substrate supporting the optical head and passes through the appropriately designed sub-wavelength annular channel, the transmitted light can overcome the diffraction limit, and the transmission energy is improved efficiently. The transmitted light converges after a certain distance behind the optical head and forms a sub-wavelength-scale beam that maintains a very long distance without divergence.
摘要:
The present invention provides an optical head with a single or multiple sub-wavelength light beams, which can be used in arenas such as photolithography, optical storage, optical microscopy, to name a few. The present invention includes a transparent substrate, a thin film, and a surface structure with sub-wavelength surface profile. The incident light transmits through the transparent substrate, forms a surface plasma wave along the sub-wavelength aperture located within the thin film, and finally re-emits through spatial coupling with the sub-wavelength profile of the surface structure. As the coupled re-emitting light beam or light beams can maintain the waist less than that of the diffraction limit for a few micrometers out of the surface with sub-wavelength profile in many cases, this invention can have applications ranging from micro or nano manufacturing, metrology, and manipulation by using light beams with waist smaller than the diffraction limit.
摘要:
Disclosed is a trace detection device of a biological and chemical analyte, including a metal substrate, a periodic metal nanostructure on the metallic substrate, a dielectric layer on the periodic metal nanostructure, and a continuous metal film on the dielectric layer. Tuning the thickness of the dielectric layer and/or the continuous metal film to meet the laser wavelength can shift the absorption peak wavelength of the sensor, thereby further enhancing the Raman signals of the analyte molecules.
摘要:
A lens unit and a projection screen made of the same are disclosed. The lens unit includes a micro lens having a light incident surface and a light emergent surface opposing to the light incident surface; a light absorbing layer formed on the light emergent surface of the micro lens and having a cavity formed therein; a scattering layer formed in the cavity of the light absorbing layer and including a transparent resin blended with scattering particles; and a reflective layer formed on the light absorbing layer and the scattering layer. The projection screen includes a plurality of the lens units, thereby achieving high contrast and high energy utilization efficiency of incident light with a large viewing angle.
摘要:
Disclosed is a trace detection device of a biological and chemical analyte, including a metal substrate, a periodic metal nanostructure on the metallic substrate, a dielectric layer on the periodic metal nanostructure, and a continuous metal film on the dielectric layer. Tuning the thickness of the dielectric layer and/or the continuous metal film to meet the laser wavelength can shift the absorption peak wavelength of the sensor, thereby further enhancing the Raman signals of the analyte molecules.
摘要:
A lens unit and a projection screen made of the same are disclosed. The lens unit includes a micro lens having a light incident surface and a light emergent surface opposing to the light incident surface; a light absorbing layer formed on the light emergent surface of the micro lens and having a cavity formed therein; a scattering layer formed in the cavity of the light absorbing layer and including a transparent resin blended with scattering particles; and a reflective layer formed on the light absorbing layer and the scattering layer. The projection screen includes a plurality of the lens units, thereby achieving high contrast and high energy utilization efficiency of incident light with a large viewing angle.
摘要:
A multi-reflection structure including a substrate and pyramid is provided. The substrate includes an inversed pyramid shaped recess having at least three first reflection sidewalls. The pyramid is disposed on the substrate and located in the inversed pyramid shaped recess. The pyramid has at least three second reflection sidewalls, wherein the normal of each of the second reflection sidewalls and the normal of each of the first reflection sidewalls are not located in the same plane. Furthermore, a photo-electric device is also provided in the present application.
摘要:
The invention provides a surface-enhanced Raman scattering substrate and a trace detection method of a biological and chemical analyte using the same. The substrate includes: a substrate having a periodic nanostructure; a reflection layer formed on the substrate; a dielectric layer formed on the reflection layer; and a metal thin film layer formed on the dielectric layer.