摘要:
A liquid crystal display (LCD) device includes an LCD panel, and a common voltage generating circuit configured for providing common voltages to the LCD panel. The common voltage generating circuit includes a microprocessor, a timer, a voltage adjustment circuit, and a look up table. The microprocessor is electrically connected to the timer, the look up table, and the voltage adjustment circuit. The timer is configured for recording a continuous operated time of the LCD panel. The look up table is configured for storing optimal common voltages corresponding to each continuous operated time. The microprocessor is configured for reading the optimal common voltage at set intervals corresponding to the continuous operated time, and controlling the voltage adjustment circuit to provide the corresponding optimal common voltage to the LCD panel.
摘要:
A liquid crystal display (LCD) device includes an LCD panel, and a common voltage generating circuit configured for providing common voltages to the LCD panel. The common voltage generating circuit includes a microprocessor, a timer, a voltage adjustment circuit, and a look up table. The microprocessor is electrically connected to the timer, the look up table, and the voltage adjustment circuit. The timer is configured for recording a continuous operated time of the LCD panel. The look up table is configured for storing optimal common voltages corresponding to each continuous operated time. The microprocessor is configured for reading the optimal common voltage at set intervals corresponding to the continuous operated time, and controlling the voltage adjustment circuit to provide the corresponding optimal common voltage to the LCD panel.
摘要:
A driving method for an active matrix liquid crystal display panel includes the following steps. First, a frame period is divided into a display period (t1) and a black insertion period (tr). A gray-scale voltage is generated according to a desired corresponding light transmittance of each pixel of the liquid crystal display panel; and during the display period, the gray-scale voltage is supplied to a corresponding pixel electrode of the liquid crystal display panel. Then during the black insertion period, a restoring voltage Vh is supplied to the pixel electrode, so that the pixel is returned to an initial black state. Accordingly, the quality of motion pictures of the liquid crystal display panel is good.
摘要:
An exemplary LCD (200) includes gate lines (23), data lines (24); a gradation voltage adjusting circuit (26) for receiving the gradation voltages respectively corresponding to the j, j+1, k, and k+1 frames interchanging the j+1 frame gradation voltage and the k frame gradation voltage when a first voltage difference between j frame gradation voltage and j+1 frame gradation voltage is less than a second voltage difference between j frame gradation voltage and k frame gradation voltage; a memory circuit (28) for storing the gradation voltages corresponding to the frames 1, 2, . . . j, j+2, . . . k−1, k+1 . . . h and storing the interchanged gradation voltages corresponding to the frames j+1 and k; and a gate driver (21) for receiving the gradation voltages stored in the memory circuit. A smallest rectangular area formed by any two adjacent gate lines together with any two adjacent data lines defines a pixel unit thereat.
摘要:
A method for driving a liquid crystal display (200) includes: providing a liquid crystal display having a plurality of pixel units and a backlight; dividing a frame time into a plurality of sub-frames; defining each pixel unit to have two states, namely on or off, in each of the sub-frames; defining the backlight to have a gradation luminance and two states, namely on or off, in each of the sub-frames; and synchronously controlling the state of each pixel unit, a time period of the on state of each pixel unit, the gradation luminance of the backlight, and a time period of the on state of the backlight in each of the sub-frames to make a resulting total luminous flux in each pixel unit corresponding to a gray scale of an image to be displayed in the frame time to be the same as that of other pixel units.
摘要:
An exemplary LCD (200) includes gate lines (23), data lines (24); a gradation voltage adjusting circuit (26) for receiving the gradation voltages respectively corresponding to the j, j+1, k, and k+1 frames interchanging the j+1 frame gradation voltage and the k frame gradation voltage when a first voltage difference between j frame gradation voltage and j+1 frame gradation voltage is less than a second voltage difference between j frame gradation voltage and k frame gradation voltage; a memory circuit (28) for storing the gradation voltages corresponding to the frames 1, 2, . . . j, j+2, . . . k−1, k+1 . . . h and storing the interchanged gradation voltages corresponding to the frames j+1 and k; and a gate driver (21) for receiving the gradation voltages stored in the memory circuit. A smallest rectangular area formed by any two adjacent gate lines together with any two adjacent data lines defines a pixel unit thereat.
摘要:
A liquid crystal display (LCD) panel includes a first substrate, a second substrate opposite to the first substrate, and a liquid crystal layer sandwiched between the first and second substrates. The first substrate includes a first wide view film and the second substrate includes a second wide view film. Angles of the first wide film, second wide film, and twist angles of liquid crystal molecules of the liquid crystal layer are defined.
摘要:
A method for generating a layout for a device having FinFETs from a first layout for a device having planar transistors is disclosed. The planar layout is analyzed and corresponding FinFET structures are generated in a matching fashion. The resulting FinFET structures are then optimized. Dummy patterns and a new metal layer may be generated before the FinFET layout is verified and outputted.
摘要:
A semiconductor FinFET device includes a plurality of gate lines formed in a first direction, and two types of fin structures. A first type of fin structures is formed in a second direction, and a second type of fin structures formed perpendicular to the first type of fin structures. A contact hole couples to one or more of the second type of fin structures.
摘要:
A method for forming a plurality of fins on a semiconductor substrate includes depositing a spacer layer to fill in gaps between the plurality of fins, the fins comprising a first material and the spacer layer comprising a second material. A first area is defined where the fins need to be broadened and a second area is defined where the fins do not need to be broadened. The method also includes patterning the spacer layer to remove spacers in the first area where the fins need to be broadened and applying an epitaxy process at a predetermined rate to grow a layer of the first material on fins in the first area. The spacer layer is removed in the second area where the fins do not need broadening.