摘要:
A method of controlling the capacitance of the TFT-LCD storage capacitor is provided. The gate dielectric layer of the TFT is composed of a silicon nitride layer, a dielectric layer and a silicon nitride layer, and the etching selectivity of the amorphous silicon layer over the dielectric layer is not less than about 5.0. Therefore, the dielectric layer can be an etching stop layer when a doped and an undoped amorphous silicon layers are etched to form source/drain stacked layers or a conductive layer is etched to form a gate on the gate dielectric layer. Hence, the dielectric layer thickness can be controlled; thereby the capacitance of the storage capacitor can be controlled.
摘要:
A method of controlling the capacitance of a thin film transistor liquid crystal display (TFT-LCD) storage capacitor is disclosed. In certain embodiments, the method includes i) forming an undoped amorphous silicon layer on a silicon nitride layer, ii) forming an etching mask on the undoped amorphous silicon layer, and iii) forming two doped amorphous silicon layers on portion of the undoped amorphous silicon layer and the etching mask, the two doped amorphous silicon layers being spaced apart and located on either side of the gate, wherein an etching selectivity ratio of the undpoed and doped amorphous silicon layers over the dielectric layer being not less than about 5.0.
摘要:
A method of controlling the capacitance of a thin film transistor liquid crystal display (TFT-LCD) storage capacitor is disclosed. In certain embodiments, the method includes i) forming a silicon island and a bottom electrode on the transparent substrate, the silicon island having an undoped region located on the central portion, and two doped regions respectively located on both sides, ii) forming a first silicon nitride layer on the transparent substrate, and iii) forming a stacked layer comprising a second silicon nitride layer and a conductive layer on the undoped region of the silicon island, and the first conductive layer of the stacked layer serving as a gate of a thin film transistor, wherein an etching selectivity ratio of the conductive layer over the dielectric layer is not less than about 5.0.
摘要:
A thin film transistor array substrate of a thin film transistor liquid crystal display (TFT-LCD) is provided. The gate dielectric layer of the TFT includes a silicon nitride layer, a dielectric layer and a silicon nitride layer, and the etching selectivity of the amorphous silicon layer over the dielectric layer is not less than about 5.0. Therefore, the dielectric layer can be an etching stop layer when doped and undoped amorphous silicon layers are etched to form source/drain stacked layers or a conductive layer is etched to form a gate on the gate dielectric layer. Hence, the dielectric layer thickness can be controlled, and thereby the capacitance of the storage capacitor can be controlled.
摘要:
A method of controlling the capacitance of a thin film transistor liquid crystal display (TFT-LCD) storage capacitor is disclosed. In certain embodiments, the method includes i) forming an undoped amorphous silicon layer on a silicon nitride layer, ii) forming an etching mask on the undoped amorphous silicon layer, and iii) forming two doped amorphous silicon layers on portion of the undoped amorphous silicon layer and the etching mask, the two doped amorphous silicon layers being spaced apart and located on either side of the gate, wherein an etching selectivity ratio of the undpoed and doped amorphous silicon layers over the dielectric layer being not less than about 5.0.
摘要:
A method of controlling the capacitance of a thin film transistor liquid crystal display (TFT-LCD) storage capacitor is disclosed. In certain embodiments, the method includes i) forming a silicon island and a bottom electrode on the transparent substrate, the silicon island having an undoped region located on the central portion, and two doped regions respectively located on both sides, ii) forming a first silicon nitride layer on the transparent substrate, and iii) forming a stacked layer comprising a second silicon nitride layer and a conductive layer on the undoped region of the silicon island, and the first conductive layer of the stacked layer serving as a gate of a thin film transistor, wherein an etching selectivity ratio of the conductive layer over the dielectric layer is not less than about 5.0.
摘要:
A thin film transistor array substrate of a thin film transistor liquid crystal display (TFT-LCD) is provided. The gate dielectric layer of the TFT includes a silicon nitride layer, a dielectric layer and a silicon nitride layer, and the etching selectivity of the amorphous silicon layer over the dielectric layer is not less than about 5.0. Therefore, the dielectric layer can be an etching stop layer when doped and undoped amorphous silicon layers are etched to form source/drain stacked layers or a conductive layer is etched to form a gate on the gate dielectric layer. Hence, the dielectric layer thickness can be controlled, and thereby the capacitance of the storage capacitor can be controlled.
摘要:
A fluorescent material and a light emitting device using the same are provided. The fluorescent material has a general formula of ((LumA1-m)zCe1-z)3Q5O12, wherein 0
摘要:
Techniques and tools for selecting search ranges and/or motion vector ranges during motion estimation are described. For example, a video encoder performs motion estimation constrained by a first search range, which results in multiple motion vectors. The encoder computes motion vector distribution information for the motion vectors. To compute the distribution information, the encoder can track the motion vectors in a histogram and count how many of the motion vectors fall within each of multiple intervals for the distribution information. The encoder then selects a second search range and performs motion estimation constrained by the second search range. Selecting the second search range can include selecting a motion vector range, which in some cases in effect determines the second search range.
摘要:
Various new and non-obvious apparatus and methods for using frame caching to improve packet loss recovery are disclosed. One of the disclosed embodiments is a method for using periodical and synchronized frame caching within an encoder and its corresponding decoder. When the decoder discovers packet loss, it informs the encoder which then generates a frame based on one of the shared frames stored at both the encoder and the decoder. When the decoder receives this generated frame it can decode it using its locally cached frame.