摘要:
It is an object to provide an organic EL display device having the organic transistor of less performance deterioration, a method of manufacturing the organic EL display device, an organic transistor, and a method of manufacturing the organic transistor.The organic EL display device P1 covers the organic transistor 50 and has a protection film 20 protecting the organic transistor. Between the protection film 20 and the surface of the organic transistor 50, a conductive layer (an negative electrode of the organic EL element 100) 18 having conductivity is formed and an insulation film 72 insulating the surface of the organic transistor 50 and the conductive layer 18 is formed on the side of the surface of the organic transistor 50 but the conductive layer 18.
摘要:
An active matrix drive organic EL display panel comprising an organic TFT with a configuration that prevents the occurrence of current leak, and a manufacturing method thereof are proposed. The organic EL display panel comprises: a substrate; an organic EL element comprising in order from the substrate, a first display electrode, an organic functional layer and a second display electrode; and an organic TFT for driving and controlling the organic EL element comprising in order from the substrate a gate electrode, a gate insulation film, source/drain electrodes, and an organic semiconductor layer. The organic EL display panel further comprises: a first bank having a first window section for demarcating a light emitting region on which the organic functional layer is provided on the first display electrode and a second window section demarcating a transistor region on which the organic semiconductor layer is provided between the source/drain electrodes; and a second bank located in the perimeter of the second window section and protruding in a direction that intersects with the main surface of the substrate.
摘要:
An active matrix drive organic EL display panel comprising an organic TFT with a configuration that prevents the occurrence of current leak, and a manufacturing method thereof are proposed. The organic EL display panel comprises: a substrate; an organic EL element comprising in order from the substrate, a first display electrode, an organic functional layer and a second display electrode; and an organic TFT for driving and controlling the organic EL element comprising in order from the substrate a gate electrode, a gate insulation film, source/drain electrodes, and an organic semiconductor layer. The organic EL display panel further comprises: a first bank having a first window section for demarcating a light emitting region on which the organic functional layer is provided on the first display electrode and a second window section demarcating a transistor region on which the organic semiconductor layer is provided between the source/drain electrodes; and a second bank located in the perimeter of the second window section and protruding in a direction that intersects with the main surface of the substrate.
摘要:
[Problems] To form an organic semiconductor layer more uniformly in a channel region by allowing formation of a pattern with a higher resolution in an organic semiconductor element.[Solving Means] An organic semiconductor element includes a gate electrode 2 formed on a substrate 1, a gate insulating layer 3 formed on the gate electrode 2, a source electrode 4 and a drain electrode 5 formed on the gate insulating layer 3, and an organic semiconductor layer 6 placed between the source and drain electrodes 4 and 5 and opposite to the gate electrode 2 with the gate insulating layer 3 interposed therebetween. A barrier 7 is formed on the surfaces of the source and drain electrodes 4 and 5 at least except for a channel region formed between the source and drain electrode 4 and 5. The barrier 7 has a surface energy level lower than that of the channel region.
摘要:
An image display device includes at least one transmissive display panel arranged at different depth positions in a direction normal to a display surface of the image display device. Each of the transmissive display panels includes a light-emitting layer that is sandwiched between a front side transmissive film and a rear side transmissive film. The rear side transmissive film has an interface with a maximum refractive index difference that causes an efficiency of light emitted from the light-emitting layer to become smaller than a front side light emission efficiency in the characteristics of light-emission efficiency, which changes with respect to a film thickness of the transmissive film due to optical interference.
摘要:
An electron emission device based flat panel display apparatus is composed of a pair of a back substrate and an optically transparent front substrate opposing to each other with a vacuum space interposed therebetween, and a plurality of electron emission devices, each of which includes an electron-supply layer made of metal or semiconductor, formed on ohmic electrodes formed on a surface of the back substrate proximate to the vacuum space, an insulator layer formed on the electron-supply layer, and a thin-film metal electrode formed on the insulator layer and facing the vacuum space. The front substrate includes collector electrodes formed on its surface proximate to the vacuum space, fluorescent material layers formed on the collector electrodes, and an image display array composed of a plurality of light emitting elements corresponding to the fluorescent material layers. The electron emission device based flat panel display apparatus also comprises an insulative support member formed on the back substrate and disposed between adjacent ones of the electron emission devices, and a plurality of electrodes, each of which is disposed between adjacent ones of the thin-film metal electrodes and on the insulative support member for electrically connecting the thin-film metal electrodes.
摘要:
A production process for making an electronic circuit substrate comprising: a patterning step of forming a respectively anodically oxidizable conductor pattern and distribution pattern connected to the conductor pattern on a substrate; and an anodic oxidation step of generating an oxide film from the conductor pattern and the distribution pattern by contacting an electrolyte solution with the conductor pattern and the distribution pattern and carrying out anodic oxidation while applying current thereto, the patterns serving as anodes, wherein the width or film thickness of the distribution pattern is at least partially set so that an insulator portion is formed in the anodic oxidation step in which an oxide film formed on one of the side walls of the distribution pattern is integrated with an oxide film formed on the other side wall.
摘要:
An electron emission light-emitting device comprises an electron emission device and a fluorescent material layer formed on the thin-film metal. The electron emission device comprises an electron-supply layer made of semiconductor formed on an ohmic electrode; an insulator layer formed on the electron-supply layer; and a thin-film metal electrode formed on the insulator layer. The electron emission light-emitting device emits light when an electric field is applied between the electron-supply layer and the thin-film metal.
摘要:
An electron emission device comprises an electron-supply layer made of metal or semiconductor and disposed on an ohmic electrode; an insulator layer formed on the electron-supply layer; and a thin-film metal electrode formed on the insulator layer. The electron-supply layer has a rectifier function layer, whereby the electron emission device emits electrons when an electric field is applied between the electron-supply layer and the thin-film metal.
摘要:
An optical recording medium is provided with: a first substrate of optically transparent type; a first recording layer formed on one surface of the first substrate, which includes phthalocyanine dye; a second substrate of optically transparent type; a second recording layer formed on one surface of the second substrate which includes phthalocyanine dye; a first elastic body layer formed on a surface of the first recording layer at a side opposite to the first substrate; a second elastic body layer formed on a surface of the second recording layer at a side opposite to the second substrate; and a bonding layer formed between the first elastic body layer and the second elastic body layer.