摘要:
Provided are a gas decomposition component, a power generation apparatus including the gas decomposition component, and a method for decomposing a gas. A gas decomposition component includes a cylindrical MEA including a first electrode layer, a cylindrical solid electrolyte layer, and a second electrode layer in order from an inside toward an outside, in a layered structure; a first gas channel through which a first gas that is decomposed flows, the first gas channel being disposed inside the cylindrical MEA; and a second gas channel through which a second gas flows, the second gas channel being disposed outside the cylindrical MEA, wherein the gas decomposition component further includes a heater for heating the entirety of the component; and a preheating pipe through which the first gas to be introduced into the first gas channel passes beforehand to be preheated.
摘要:
Provided are a gas decomposition component, a method for producing a gas decomposition component, and a power generation apparatus. A gas decomposition component 10 includes a cylindrical-body MEA 7 including a first electrode 2 disposed on an inner-surface side, a second electrode 5 disposed on an outer-surface side, and a solid electrolyte 1 sandwiched between the first electrode and the second electrode; and a porous metal body 11s inserted on the inner-surface side of the cylindrical-body MEA and electrically connected to the first electrode, wherein the gas decomposition component further includes a porous conductive-paste-coated layer 11g formed on an inner circumferential surface of the first electrode, and a metal mesh sheet 11a disposed on an inner circumferential side of the conductive-paste-coated layer, and an electrical connection between the first electrode and the porous metal body is established through the conductive-paste-coated layer and the metal mesh sheet.
摘要:
Provided are a gas decomposition component, a method for producing a gas decomposition component, and a power generation apparatus. A gas decomposition component 10 includes a cylindrical-body MEA 7 including a first electrode 2 disposed on an inner-surface side, a second electrode 5 disposed on an outer-surface side, and a solid electrolyte 1 sandwiched between the first electrode and the second electrode; and a porous metal body 11s inserted on the inner-surface side of the cylindrical-body MEA and electrically connected to the first electrode, wherein the gas decomposition component further includes a porous conductive-paste-coated layer 11g formed on an inner circumferential surface of the first electrode, and a metal mesh sheet 11a disposed on an inner circumferential side of the conductive-paste-coated layer, and an electrical connection between the first electrode and the porous metal body is established through the conductive-paste-coated layer and the metal mesh sheet.
摘要:
A gas decomposition component includes a cylindrical membrane electrode assembly (MEA) including a first electrode layer, a cylindrical solid electrolyte layer, and a second electrode layer in order from an inside toward an outside, in a layered structure, wherein an end portion of the cylindrical MEA is sealed, a gas guide pipe is inserted through another end portion of the cylindrical MEA into an inner space of the cylindrical MEA to form a cylindrical channel between the gas guide pipe and an inner circumferential surface of the cylindrical MEA, and a gas flowing through the gas guide pipe toward the sealed portion is made to flow out of the gas guide pipe in a region near the sealed portion so that a flow direction of the gas is reversed and the gas flows through the cylindrical channel in a direction opposite to the flow direction in the guide pipe.
摘要:
Provided are a gas decomposition component, a power generation apparatus including the gas decomposition component, and a method for decomposing a gas. A gas decomposition component includes a cylindrical MEA including a first electrode layer, a cylindrical solid electrolyte layer, and a second electrode layer in order from an inside toward an outside, in a layered structure; a first gas channel through which a first gas that is decomposed flows, the first gas channel being disposed inside the cylindrical MEA; and a second gas channel through which a second gas flows, the second gas channel being disposed outside the cylindrical MEA, wherein the gas decomposition component further includes a heater for heating the entirety of the component; and a preheating pipe through which the first gas to be introduced into the first gas channel passes beforehand to be preheated.
摘要:
Provided is a gas decomposition component that employs an electrochemical reaction to reduce the running cost and can have high treatment performance. A gas decomposition component includes a cylindrical-body MEA 7 including an anode 2 on an inner-surface side, a cathode 5 on an outer-surface side, and a solid electrolyte 1; and a porous metal body 11s that is inserted on the inner-surface side of the cylindrical-body MEA and is electrically connected to the anode 2, wherein a metal mesh sheet 11a is disposed between the anode 2 and the porous metal body 11s. Another gas decomposition component includes the cylindrical MEA 7 and silver-paste-coated wiring 12g formed on the cathode 5, wherein the silver-paste-coated wiring 12g is a porous body.
摘要:
Provided is a gas decomposition component that employs an electrochemical reaction and can have high treatment performance, in particular, an ammonia decomposition component. The gas decomposition component includes a MEA 7 including a solid electrolyte 1 and an anode 2 and a cathode 5 that are disposed so as to sandwich the solid electrolyte; Celmets 11s electrically connected to the anode 2; a heater 41 that heats the MEA; and an inlet 17 through which a gaseous fluid containing a gas is introduced into the MEA, an outlet 19 through which the gaseous fluid having passed through the MEA is discharged, and a passage P extending between the inlet and the outlet, wherein the Celmets 11s are discontinuously disposed along the passage P and, with respect to a middle position 15 of the passage, the length of the Celmets disposed is larger on the side of the outlet than on the side of the inlet.
摘要:
Provided are a gas decomposition component in which an electrochemical reaction is used to reduce the running cost and high treatment performance can be achieved; and a method for producing the gas decomposition component. The gas decomposition component includes a cylindrical MEA 7 including an anode 2 on an inner-surface side, a cathode 5 on an outer-surface side, and a solid electrolyte 1 sandwiched between the anode and the cathode; a porous metal body 11s that is inserted on the inner-surface side of the cylindrical MEA and is in contact with the first electrode; and a central conductive rod 11k inserted so as to serve as an electrically conductive shaft of the porous metal body 11s.
摘要:
Provided is a gas decomposition component that employs an electrochemical reaction and can have high treatment performance, in particular, an ammonia decomposition component. The gas decomposition component includes a MEA 7 including a solid electrolyte 1 and an anode 2 and a cathode 5 that are disposed so as to sandwich the solid electrolyte; Celmets 11s electrically connected to the anode 2; a heater 41 that heats the MEA; and an inlet 17 through which a gaseous fluid containing a gas is introduced into the MEA, an outlet 19 through which the gaseous fluid having passed through the MEA is discharged, and a passage P extending between the inlet and the outlet, wherein the Celmets 11s are discontinuously disposed along the passage P and, with respect to a middle position 15 of the passage, the length of the Celmets disposed is larger on the side of the outlet than on the side of the inlet.
摘要:
Provided are a gas decomposition component in which an electrochemical reaction is used to reduce the running cost and high treatment performance can be achieved; and a method for producing the gas decomposition component. The gas decomposition component includes a cylindrical MEA 7 including an anode 2 on an inner-surface side, a cathode 5 on an outer-surface side, and a solid electrolyte 1 sandwiched between the anode and the cathode; a porous metal body 11s that is inserted on the inner-surface side of the cylindrical MEA and is in contact with the first electrode; and a central conductive rod 11k inserted so as to serve as an electrically conductive shaft of the porous metal body 11s.