摘要:
Provided are a gas decomposition component, a method for producing a gas decomposition component, and a power generation apparatus. A gas decomposition component 10 includes a cylindrical-body MEA 7 including a first electrode 2 disposed on an inner-surface side, a second electrode 5 disposed on an outer-surface side, and a solid electrolyte 1 sandwiched between the first electrode and the second electrode; and a porous metal body 11s inserted on the inner-surface side of the cylindrical-body MEA and electrically connected to the first electrode, wherein the gas decomposition component further includes a porous conductive-paste-coated layer 11g formed on an inner circumferential surface of the first electrode, and a metal mesh sheet 11a disposed on an inner circumferential side of the conductive-paste-coated layer, and an electrical connection between the first electrode and the porous metal body is established through the conductive-paste-coated layer and the metal mesh sheet.
摘要:
Provided are a gas decomposition component, a method for producing a gas decomposition component, and a power generation apparatus. A gas decomposition component 10 includes a cylindrical-body MEA 7 including a first electrode 2 disposed on an inner-surface side, a second electrode 5 disposed on an outer-surface side, and a solid electrolyte 1 sandwiched between the first electrode and the second electrode; and a porous metal body 11s inserted on the inner-surface side of the cylindrical-body MEA and electrically connected to the first electrode, wherein the gas decomposition component further includes a porous conductive-paste-coated layer 11g formed on an inner circumferential surface of the first electrode, and a metal mesh sheet 11a disposed on an inner circumferential side of the conductive-paste-coated layer, and an electrical connection between the first electrode and the porous metal body is established through the conductive-paste-coated layer and the metal mesh sheet.
摘要:
A linear object is composed of a magnesium alloy including, in percent by mass, 0.1% to 6% of Zn, 0.4% to 4% of Ca, and the balance being Mg and incidental impurities, in which, when a creep test is performed on the linear object under conditions of a temperature of 150° C., a stress of 75 MPa, and a holding time of 100 hours, the linear object has a creep strain of 1.0% or less. Zn and Ca interact with each other to improve heat resistance, and thus it is possible to obtain the linear object having an excellent creep property. By incorporating Zn and Ca, in amounts in specific ranges, into the magnesium alloy, it is also possible to obtain the linear object having excellent plastic workability.
摘要:
A gas decomposition component includes a cylindrical membrane electrode assembly (MEA) including a first electrode layer, a cylindrical solid electrolyte layer, and a second electrode layer in order from an inside toward an outside, in a layered structure, wherein an end portion of the cylindrical MEA is sealed, a gas guide pipe is inserted through another end portion of the cylindrical MEA into an inner space of the cylindrical MEA to form a cylindrical channel between the gas guide pipe and an inner circumferential surface of the cylindrical MEA, and a gas flowing through the gas guide pipe toward the sealed portion is made to flow out of the gas guide pipe in a region near the sealed portion so that a flow direction of the gas is reversed and the gas flows through the cylindrical channel in a direction opposite to the flow direction in the guide pipe.
摘要:
Provided is a gas decomposition component that employs an electrochemical reaction and can have high treatment performance, in particular, an ammonia decomposition component. The gas decomposition component includes a MEA 7 including a solid electrolyte 1 and an anode 2 and a cathode 5 that are disposed so as to sandwich the solid electrolyte; Celmets 11s electrically connected to the anode 2; a heater 41 that heats the MEA; and an inlet 17 through which a gaseous fluid containing a gas is introduced into the MEA, an outlet 19 through which the gaseous fluid having passed through the MEA is discharged, and a passage P extending between the inlet and the outlet, wherein the Celmets 11s are discontinuously disposed along the passage P and, with respect to a middle position 15 of the passage, the length of the Celmets disposed is larger on the side of the outlet than on the side of the inlet.
摘要:
A grain classifying device for accurately classifying the grains of uniform length, and an adhesive containing grains classified by the device and capable of connecting electrodes under a low pressure and being applicable to electrodes arranged in fine pitches. The grain classifying device (1) includes a dispersing means (2) for dispersing a plurality of grains (P). A grain orienting means (3) orients each of the dispersed grains in a transfer direction (X) of the grains (P) while spacing the grains apart from one another in the transfer direction (X) of the grains. A grain length measuring means (4) measures the length of each of the grains (P) oriented in the transfer direction (X). A grain separation means (5) separates the grains (P) having a predetermined length based on data related to the lengths of the measured grains (P).
摘要:
A grain classifying device for accurately classifying the grains of uniform length, and an adhesive containing grains classified by the device and capable of connecting electrodes under a low pressure and being applicable to electrodes arranged in fine pitches. The grain classifying device (1) includes a dispersing means (2) for dispersing a plurality of grains (P). A grain orienting means (3) orients each of the dispersed grains in a transfer direction (X) of the grains (P) while spacing the grains apart from one another in the transfer direction (X) of the grains. A grain length measuring means (4) measures the length of each of the grains (P) oriented in the transfer direction (X). A grain separation means (5) separates the grains (P) having a predetermined length based on data related to the lengths of the measured grains (P).
摘要:
The present invention provides a pipe coupling socket having a main body containing a plurality of lock balls for locking a plug accepted in the main body. The main body has a projecting lock portion which projects from the outer circumferential surface and has a top surface in which a groove is formed. The operation sleeve has a stepped portion formed in the circumferential direction on the inner surface thereof, such as to engage with an axial end of the projecting lock portion, thus inhibiting the operation sleeve from transferring to the rear end portion side, a lock releasing recess recessed in the stepped portion such as to house an axial end of the projecting lock portion, thus allowing the operation sleeve to transfer to the rear end portion side, and protruding portions which can be fitted to the groove when the projecting lock portions are placed at a position which matches the lock releasing recess in the axial direction, and at a position which is offset from the lock releasing recess in the circumferential direction. The projecting lock portion can go over the protruding portions when the user moves the operation sleeve in the circumferential direction.
摘要:
An object is to obtain a stable electric connection resistance under a mild crimping condition. The present invention is a terminal connector 12 that includes a crimp portion 30 to be crimped to an electric wire. The crimp portion 30 includes a base material, an aluminum layer or an aluminum alloy layer a surface on the base material, and a hard layer on a surface of the aluminum layer or the aluminum alloy layer. The hard layer is harder than the base material. The present invention may be an electric wire with a terminal connector 10 that includes the above terminal connector 12 and a covered electric wire 40 that includes a core wire 42 made of aluminum or aluminum alloy. The crimp portion 30 of the terminal connector 12 is crimped to the core wire 42.