摘要:
A method of manufacturing the semiconductor device having a dual fully-silicided gate includes the following steps. A substrate having a first transistor and a second transistor formed thereon is provided, wherein the first transistor includes a first gate and a first source/drain and the second transistor includes a second gate and a second source/drain. The gate height of the first gate is different from that of the second gate. A first silicidation process is performed to respectively transform the first gate and the second gate into a first silicided gate and a second silicided gate simultaneously, wherein the material of the first silicided gate is different from that of the second silicided gate.
摘要:
A metal oxide semiconductor (MOS) transistor with a Y structure metal gate is provided. The MOS transistor includes a substrate, a Y structure metal gate positioned on the substrate, two doping regions disposed in the substrate on two sides of the Y structure metal structure, a spacer, an insulating layer positioned outside the spacer, a dielectric layer positioned outside the insulating layer and a bevel edge covering the spacer. The spacer has a vertical sidewall, and the vertical sidewall surrounds a recess. A part of the Y structure metal gate is disposed in the recess, and a part of the Y structure metal gate is positioned on the bevel edge.
摘要:
A method for forming a fully silicided gate is disclosed. A gate structure of a transistor device is provided on a substrate. A mask layer is spin-on coated over the substrate to cover the gate structure and source/drain regions of the transistor device. The mask layer is etched back to expose a silicon layer of the gate structure. The silicon layer of the gate structure is then fully silicided. The mask layer is then removed from the substrate to expose the source/drain regions. The source/drain regions are finally silicided.
摘要:
A method of manufacturing a metal oxide semiconductor transistor having a metal gate is provided. The method firstly includes a step of providing a substrate. A dummy gate is formed on the substrate, a spacer is formed around the dummy gate, and doped regions are formed in the substrate outside of the dummy gate. A bevel edge is formed on the spacer, and a trench is formed in the inner sidewall of the spacer. A barrier layer, and a metal gate are formed in the trench and on the bevel edge, and the barrier layer will not form poor step coverage.
摘要:
A method of manufacturing a metal oxide semiconductor transistor having a metal gate is provided. The method firstly includes a step of providing a substrate. A dummy gate is formed on the substrate, a spacer is formed around the dummy gate, and doped regions are formed in the substrate outside of the dummy gate. A bevel edge is formed on the spacer, and a trench is formed in the inner sidewall of the spacer. A barrier layer, and a metal gate are formed in the trench and on the bevel edge, and the barrier layer will not form poor step coverage.
摘要:
A metal oxide semiconductor (MOS) transistor with a Y structure metal gate is provided. The MOS transistor includes a substrate, a Y structure metal gate positioned on the substrate, two doping regions disposed in the substrate on two sides of the Y structure metal structure, a spacer, an insulating layer positioned outside the spacer, a dielectric layer positioned outside the insulating layer and a bevel edge covering the spacer. The spacer has a vertical sidewall, and the vertical sidewall surrounds a recess. A part of the Y structure metal gate is disposed in the recess, and a part of the Y structure metal gate is positioned on the bevel edge.
摘要:
A metal gate structure is disclosed. The metal gate structure includes: a semiconductor substrate having an active region and an isolation region; an isolation structure disposed in the isolation region; a first gate structure disposed on the active region; and a second gate structure disposed on the isolation structure, wherein the height of the second gate structure is different from the height of the first gate structure.
摘要:
A method for forming a semiconductor element structure is provided. First, a substrate including a first MOS and a second MOS is provided. The gate electrode of the first MOS is connected to the gate electrode of the second MOS, wherein the first MOS includes a first high-K material and a first metal for use in a first gate, and a second MOS includes a second high-K material and a second metal for use in a second gate. Then the first gate and the second gate are partially removed to form a connecting recess. Afterwards, the connecting recess is filled with a conductive material to form a bridge channel for electrically connecting the first metal and the second metal.
摘要:
A method for fabricating metal gate transistor is disclosed. First, a substrate having a first transistor region and a second transistor region is provided. Next, a stacked film is formed on the substrate, in which the stacked film includes at least one high-k dielectric layer and a first metal layer. The stacked film is patterned to form a plurality of gates in the first transistor region and the second transistor region, a dielectric layer is formed on the gates, and a portion of the dielectric layer is planarized until reaching the top of each gates. The first metal layer is removed from the gate of the second transistor region, and a second metal layer is formed over the surface of the dielectric layer and each gate for forming a plurality of metal gates in the first transistor region and the second transistor region.
摘要:
A method for fabricating metal gate transistors and a polysilicon resistor is disclosed. First, a substrate having a transistor region and a resistor region is provided. A polysilicon layer is then formed on the substrate to cover the transistor region and the resistor region of the substrate. Next, a portion of the polysilicon layer disposed in the resistor is removed, and the remaining polysilicon layer is patterned to create a step height between the surface of the polysilicon layer disposed in the transistor region and the surface of the polysilicon layer disposed in the resistor region.