摘要:
A thermal interface material (10) includes 100 parts by weight of a silicone oil (11) and 800˜1200 parts by weight of a metal powder (12) mixed into the silicone oil. An outer surface of each metal particle (121) of the metal powder is coated with a metal oxide layer (122). A method of producing the thermal interface material includes steps of: (1) applying a layer of organo coupling agent on the metal powder; (2) heating the metal powder at a temperature between 200 to 300° C. to coat a metal oxide layer on an outer surface of the metal powder; and (3) adding the metal powder with the coated metal oxide layer to a silicone oil. The thermal interface material has an excellent thermal conductivity and an excellent electrical insulating property.
摘要:
A semiconductor device (10) includes a heat source (12), a heat-dissipating component (13) for dissipating heat generated by the heat source, and a thermal interface material (14) filled in a space formed between the heat source and the heat-dissipating component. The thermal interface material includes a mixture of first copper powders having an average particle size of 2 um and second copper powders having an average particle size of 5 um, a silicone oil having a viscosity from 50 to 50,000 cs at 25° C., and at least one oxide powder selected from the group consisting of zinc oxide and alumina powders. The mixture of copper powders is 50% to 90% in weight, the silicone oil is 5% to 15% in weight and the at least one oxide powder is 0% to 35% in weight of the thermal interface material.
摘要:
A thermal interface material includes 100 parts by weight of base oil including amino-modified silicone fluid and at least one of methylphenylsilicone fluid and fluorosilicone fluid, and 800 to 1200 parts by weight of fillers filled in the base oil. The fillers have an average particle size of 0.1 to 5 um and are selected from the group consisting of zinc oxide powder, alumina powder and metallic aluminum powder.
摘要:
A thermal interface material (10) includes 100 parts by weight of a silicone oil (11) and 800˜1200 parts by weight of a metal powder (12) mixed into the silicone oil. An outer surface of each metal particle (121) of the metal powder is coated with a metal oxide layer (122). A method of producing the thermal interface material includes steps of: (1) applying a layer of organo coupling agent on the metal powder; (2) heating the metal powder at a temperature between 200 to 300° C. to coat a metal oxide layer on an outer surface of the metal powder; and (3) adding the metal powder with the coated metal oxide layer to a silicone oil. The thermal interface material has an excellent thermal conductivity and an excellent electrical insulating property.
摘要:
A thermal interface material is for being applied to the contact surfaces to eliminate the air interstices between the heat dissipating apparatus and the electronic component in order to improve heat dissipation of the electronic component. The thermal interface material includes pentaerythritol oleate as base oil and fillers filled in the pentaerythritol oleate for improving the heat conductivity of the thermal interface material. The pentaerythritol oleate is used for holding the fillers therein and filling the air interstices to achieve an intimate contact between the heat dissipating apparatus and the electronic component. The fillers include aluminum powders, zinc oxide powders and zinc oxide nano-particles.
摘要:
A silicone grease composition includes approximately 5 to 50% by weight of liquid organopolysiloxane, 45 to 94.9% by weight of a thermally conductive filler, and 0.1 to 5% by weight of a coupling agent chosen from at least one of a titanate-based coupling agent and an aluminate-based coupling agent. Due to the presence of the coupling agent, the silicone grease composition has a relatively lower viscosity and thus is capable of containing a larger amount of the filler whereby the thermally conductive efficiency of the composition is accordingly improved.
摘要:
A thermal interface material is for being applied to the contact surfaces to eliminate the air interstices between the heat dissipating apparatus and the electronic component in order to improve heat dissipation of the electronic component. The thermal interface material includes pentaerythritol oleate as base oil and fillers filled in the pentaerythritol oleate for improving the heat conductivity of the thermal interface material. The pentaerythritol oleate is used for holding the fillers therein and filling the air interstices to achieve an intimate contact between the heat dissipating apparatus and the electronic component. The fillers include aluminum powders, zinc oxide powders and zinc oxide nano-particles.
摘要:
A method and apparatus for packaging semiconductor dies for increased thermal conductivity and simpler fabrication when compared to conventional semiconductor packaging techniques are provided. The packaging techniques described herein may be suitable for various semiconductor devices, such as light-emitting diodes (LEDs), central processing units (CPUs), graphics processing units (GPUs), microcontroller units (MCUs), and digital signal processors (DSPs). For some embodiments, the package includes a ceramic substrate having an upper cavity with one or more semiconductor dies disposed therein and having a lower cavity with one or more metal layers deposited therein to dissipate heat away from the semiconductor dies. For other embodiments, the package includes a ceramic substrate having an upper cavity with one or more semiconductor dies disposed therein and having a lower surface with one or more metal layers deposited thereon for efficient heat dissipation.
摘要:
A heat pipe (10) includes a pipe body (20) having an inner wall (22) and a screen mesh (30) disposed on the inner wall of the pipe body. The screen mesh is in the form of a multi-layer structure with at least one layer thereof having an average pore size different from that of the other layers. The layer with large-sized pores is capable of reducing the flow resistance to the condensed fluid to flow back, whereas the layer with small-size pores is capable of providing a relatively large capillary pressure for drawing the condensed fluid from the condensing section to the evaporating section.
摘要:
A heat pipe (10) includes a pipe body (30) filled with working fluid, a screen mesh (50) located in the pipe body, a porous support member (70) supporting the screen mesh to contact with an inner wall (32) of the pipe body.