Abstract:
A photoelectronic element having a transparent adhesion structure includes a supporting substrate; a first transparent adhesion layer formed on the supporting substrate; a second transparent adhesion layer formed on the first transparent adhesion layer; and a first semiconductor stack layer formed on the second transparent adhesion layer wherein the first semiconductor stack layer includes a first active layer; wherein the interface between the first transparent adhesion layer and the second transparent adhesion layer contains hydrogen-oxygen bond after being treated by an activator.
Abstract:
An optoelectronic device is provided and includes a substrate, a p-type cladding layer, an active layer and a conductive light extraction unit. The conductive light extraction unit includes an n- type cladding layer above the active layer, a metal layer above the n-type cladding layer and a plurality of holes passing through the metal layer and the n-type cladding layer. Sizes of the plurality of holes are not the same and/or the holes are arranged irregularly.
Abstract:
An exemplary semiconductor device is provided. The semiconductor device includes a semiconductor stacked layer and a conductive structure. The conductive structure is located on the semiconductor stacked layer. The conductive structure includes a bottom portion and a top portion on opposite sides thereof. The bottom portion is in contact with the semiconductor stacked layer. A ratio of a top width of the top portion to a bottom width of the bottom portion is less than 0.7. The conductive structure can be a conductive dot structure or a conductive line structure.
Abstract:
A photoelectronic element includes a composite substrate including an electrically insulative substrate having a chamber; an intermediate layer; and an electrically conductive substrate; a bonding layer including an electrically conductive region and an electrically insulative region; a first current spreading layer; a first semiconductor stacked layer including a first semiconductor layer, an active layer, and a second semiconductor layer; a current blocking layer; a second current spreading layer; and a first electrode.