摘要:
A technique for providing a secure link when transitioning between pairs of link layer protocol entities in a mobile communication system is disclosed. The first pair of link layer protocol entities includes a first transmitting link layer protocol entity and a first receiving link layer protocol entity. The second pair of link layer protocol entities includes a second transmitting link layer protocol entity and a second receiving link layer protocol entity. The technique is realized by first suspending data transmissions from the first transmitting link layer protocol entity to the first receiving link layer protocol entity, and then initiating data transmissions from the second transmitting link layer protocol entity to the second receiving link layer protocol entity. Unacknowledged segmented data in the first transmitting link layer protocol entity is then tunneled from the first transmitting link layer protocol entity to the first receiving link layer protocol entity through the second transmitting link layer protocol entity and the second receiving link layer protocol entity.
摘要:
A flexible Radio Link Control (RLC) protocol for a mobile communication system is provided, whereby a plurality of different RLC functions are defined. These different RLC functions can be combined in a number of different ways to produce a complete and functional, but more flexible RLC protocol than the existing protocol. For example, a new set of rules are provided for determining how and/or when to poll for, or send, a status report for Automatic Repeat Request (ARQ) purposes. As such, for a specific service configuration, one set of the rules can be used, and for a different service configuration, another set of the rules can be used. In this way, the rules can be conformed suitably to the type of service involved.
摘要:
A method for minimizing feedback responses in an ARQ protocol is disclosed, whereby different mechanisms can be used to indicate erroneous D-PDUs and construct S-PDUs. The S-PDUs are constructed so as to optimize performance in accordance with certain criteria. One such criterion used is to minimize the size of the S-PDUs. A second such criterion used is to maximize the number of SNs included in an S-PDU of limited size.
摘要:
In a method for improving the transmission efficiency in a communication system with a layered protocol stack, data packets are processed on an upper protocol layer. Data packets are forwarded to a lower protocol layer for transmission and the transmission is performed with variable channel access delays. The upper protocol layer is notified by the lower protocol layer when a transmission is started to allow a synchronization of timers in the upper protocol layer. If a layer performs a scheduling of data packets for the transmission, a rescheduling is performed alternatively or in addition during a channel access delay. Devices and software programs embodying the invention are also described.
摘要:
In a method for improving the transmission efficiency in a communication system with a layered protocol stack, data packets are processed on an upper protocol layer. Data packets are forwarded to a lower protocol layer for transmission and the transmission is performed with variable channel access delays. The upper protocol layer is notified by the lower protocol layer when a transmission is started to allow a synchronization of timers in the upper protocol layer. If a layer performs a scheduling of data packets for the transmission, a rescheduling is performed alternatively or in addition during a channel access delay. Devices and software programs embodying the invention are also described.
摘要:
In a method for improving the transmission efficiency in a communication system with a layered protocol stack, data packets are processed on an upper protocol layer. Data packets are forwarded to a lower protocol layer for transmission and the transmission is performed with variable channel access delays. The upper protocol layer is notified by the lower protocol layer when a transmission is started to allow a synchronization of timers in the upper protocol layer. If a layer performs a scheduling of data packets for the transmission, a rescheduling is performed alternatively or in addition during a channel access delay. Devices and software programs embodying the invention are also described.
摘要:
In a method for the transmission of data packets (D) from a transmitter (TR) to a receiver (RE) identification of transmitted data packets are stored. Defective data packets (D) are detected by the receiver (RE), status messages (S) which request defective data packets for retransmission are sent from the receiver (RE) to the transmitter (TR) and retransmissions of requested data packets are performed according to the status messages (S). The transmitter (TR) evaluates a first status message (S11) with an identification of at least one first requested data packet and retransmits the first data packet. The transmitter (TR) then initializes a timing unit according to the retransmission of the first data packet, wherein the timing unit or a threshold for the timing unit is attributable to the first data packet. When the transmitter evaluates a further status message (S12) and detects at least one further data packet that is requested for a retransmission, it selects the further data packet if the timing unit has reached the threshold or if the identification of the further data packet is different from the identification of the first data packets. Only the selected data packets are retransmitted. A transmitter and software programs embodying the invention are also described.
摘要:
A radio communication system and a method for assigning a short-lived Cell Radio Network Temporary Identifier, “CRNTI”, to a first user equipment performing random access to a radio network node are provided. The radio communication system registers the first user equipment as connected to the radio network node. A message for synchronizing the radio network node and the first user equipment with respect to the first time period is transferred. After the first time period has elapsed, the radio communication system maintains the first user equipment connected to the radio network node, and allows the short-lived CRNTI to be assigned to a second user equipment.
摘要:
This invention extends routing mechanisms that use link metrics for route selection so that: A link metric cross correlation vector is determined for all links, where each element in the vector corresponds to some other link, and reflects the change in the link metric value if a data flow would already use this other link. The invention further describes a specific embodiment where all cross-correlating links are adjacent to each other, i.e., they terminate or originate in a common node. A mechanism is described to create an extended routing graph. This extended graph permits the use of standard polynomial time algorithms that simultaneously construct the optimal route and find the optimal route metric (such as shortest-path algorithms) also for the adjacent link cross-correlating case.
摘要:
A network node (110) and a method therein for managing radio, resources are disclosed. The radio resources are dedicated for beacon (121, 122) signaling, fey a first device; (131) and a second device (132), in conjunction with device-to-device, “D2D”, discovery. The first device: (131) is stationary and the second device (132) is non-stationary. The network node (110) selects (202) a first and a second set of radio resources out of the radio resources. The first and second sets are dedicated for beacon signaling by the first device (131) and the second device (132), respectively. The first set of radio resources Is non-overlapping with the second set of radio resources. Then the network node (110) schedules (203) a specific radio resource of the first set of radio resources to the first device (131). Next, the network node (110) sends (204) information about the scheduled specific radio resource to the first device (131). The network node (110) further sends (205) information about the second set of radio resources to the second device (132). In this manner, the second device (132) restricts Us radio resources usable for beacon signaling to the second set of radio resources.