摘要:
A lithium-ion battery includes a cathode that includes an active cathode material. The active cathode material includes a cathode mixture that includes a lithium cobaltate and a manganate spinel a manganate spinel represented by an empirical formula of Li(1+x1)(Mn1−y1A′y2)2−x2Oz1. The lithium cobaltate and the manganate spinel are in a weight ratio of lithium cobaltate: manganate spinel between about 0.95:0.05 to about 0.55:0.45. A lithium-ion battery pack employs a cathode that includes an active cathode material as described above. A method of forming a lithium-ion battery includes the steps of forming an active cathode material as described above; forming a cathode electrode with the active cathode material; and forming an anode electrode in electrical contact with the cathode via an electrolyte.
摘要:
A storage voltage of a battery pack is controlled with control electronics. The storage voltage of a battery pack is sensed, and a discharge mechanism is triggered if the storage voltage is within a predetermined range of voltage, to thereby adjust the storage voltage of the battery pack to below the predetermined range of voltage, or if the storage voltage is at or above a predetermined voltage, to thereby adjust the storage voltage of the battery pack to below the predetermined voltage. Control electronics sense a storage voltage of a battery pack and trigger a discharge mechanism if the storage voltage is within a predetermined range of voltage, to thereby adjust the storage voltage of the battery pack to below the predetermined range of voltage, or if the storage voltage is at or above a predetermined voltage, to thereby adjust the storage voltage of the battery pack to below the predetermined voltage. The control electronics are coupled to an electronic device and a battery pack. The control electronics are either implemented into the electronic device or the battery pack, or in a separate control electronic device.
摘要:
A crystal which can be employed as the active material of a lithium-based battery has an empirical formula of Lix1A2Ni1-y-zCoyBzOa, wherein “x1” is greater than about 0.1 and equal to or less than about 1.3, “x2,” “y” and “z” each is greater than about 0.0 and equal to or less than about 0.2, “a” is greater than about 1.5 and less than about 2.1, “A” is at least one element selected from the group consisting of barium, magnesium, calcium and strontium and “B” is at least one element selected from the group consisting of boron, aluminum, gallium, manganese, titanium, vanadium and zirconium. A method includes combining lithium, nickel, cobalt and at least one element “A” selected from the group consisting of barium, magnesium, calcium and strontium, has at least one element “B” selected from the group consisting of boron, aluminum, gallium, manganese, titanium, vanadium and zirconium, in the presence of oxygen, wherein the combined components have the relative ratio of Lix1:Ax2:Ni1-y-z:Coy:Bz, wherein “x1,” “x2,” “y” and “z” have the values given for the empirical formula shown above.
摘要:
An electroluminescent device is disclosed which has an electron conductor fabricated from a stable low electron affinity substance in combination with an emitting species and a hole conductor. The hole conductor and the electron conductor transport to opposed sides of the emitting species holes and electrons respectively that cause the emitting species to undergo a quantum change of state and generate light. In one embodiment the electron conductor is comprised of a plurality of structured particles, each in electrical communication with each other, where the plurality of structured particles are small enough so as their properties deviate from the bulk properties of the substance from which the structured particles are fabricated. In this embodiment the plurality of structured particles are also crystalline in nature. The plurality of structured particles are also in contact with an emitting species and act as an electron conductor. Another embodiment of the electroluminescent device uses more than one of plurality of structured particles, more than one emitting species and more than one hole conductor, such that each combination of one plurality of structured particles, emitting species, and hole conductor emits a different predetermined wavelength of light.
摘要:
A composition suitable for use as a cathode material of a lithium battery includes a core material having an empirical formula LixM′zNi1−yM″yO2. “x” is equal to or greater than about 0.1 and equal to or less than about 1.3. “y” is greater than about 0.0 and equal to or less than about 0.5. “z” is greater than about 0.0 and equal to or less than about 0.2. M′ is at least one member of the group consisting of sodium, potassium, nickel, calcium, magnesium and strontium. M″ is at least one member of the group consisting of cobalt, iron, manganese, chromium, vanadium, titanium, magnesium, silicon, boron, aluminum and gallium. A coating on the core has a greater ratio of cobalt to nickel than the core. The coating and, optionally, the core can be a material having an empirical formula Lix1Ax2Ni1−y1−z1Coy1Bz1Oa. “x1” is greater than about 0.1 a equal to or less than about 1.3. “x2,” “y1” and “z1” each is greater than about 0.0 and equal to or less than about 0.2. “a” is greater than 1.5 and less than about 2.1. “A” is at least one element selected from the group consisting of barium, magnesium, calcium and strontium. “B” is at least one element selected from the group consisting of boron, aluminum, gallium, manganese, titanium, vanadium and zirconium.
摘要:
A new method for synthesising an essentially V.sub.2 O.sub.5 -free vanadium oxide having a mean vanadium oxidation state of at least +4 but lower than +5 from NH.sub.4 VO.sub.3 is disclosed. By this method NH.sub.4 VO.sub.3 is heated to a reaction temperature sufficient for thermal decomposition of NH.sub.4 VO.sub.3, and at said reaction temperature, the pressure is kept on at least 0.5 MPa. The method enables production of single-phase V.sub.6 O.sub.13, single-phase VO.sub.2 as well as any mixture thereof in a remarkably simple manner, as it primarily involves careful control of temperature and pressure conditions. The synthesis method of the invention can thus be easily scaled up to any industrial requirement.
摘要:
In one embodiment, an active cathode material comprises a mixture that includes: at least one of a lithium cobaltate and a lithium nickelate; and at least one of a manganate spinel represented by an empirical formula of Li(1+x1)(Mn1−y1A′y1)2−x1Oz1 and an olivine compound represented by an empirical formula of Li(1−x2)A″x2MPO4. In another embodiment, an active cathode material comprises a mixture that includes: a lithium nickelate selected from the group consisting of LiCoO2-coated LiNi0.8Co0.15Al0.05O2, and Li(Ni1/3Co1/3Mn1/3)O2; and a manganate spinel represented by an empirical formula of Li(1+x7)Mn2−y7Oz7. A lithium-ion battery and a battery pack each independently employ a cathode that includes an active cathode material as described above. A method of forming a lithium-ion battery includes the steps of forming an active cathode material as described above; forming a cathode electrode with the active cathode material; and forming an anode electrode in electrical contact with the cathode via an electrolyte. A system comprises a portable electronic device and a battery pack or lithium-ion battery as described above.
摘要翻译:在一个实施方案中,活性阴极材料包括混合物,其包括:钴酸锂和镍酸锂中的至少一种; 并且由Li(1 + x1)(Mn 1-y1 A'y1)的经验式表示的锰酸盐尖晶石中的至少一种, 以及由经验式Li(1-x2)A“x2”表示的橄榄石化合物, / SUB> MPO 4 SUB>。 在另一个实施方案中,活性阴极材料包括一种混合物,其包括:镍酸锂,其选自LiCoO 2涂覆的LiNi 0.8 Nb 0.15, 另一方面,Li(Ni 1/3)1/3 O 3 O 2,和/ 1/3)O 2; 和由Li(1 + x7)Mn 2-y7 O z7 N的经验式表示的锰酸盐尖晶石。 锂离子电池和电池组各自独立地使用包含如上所述的活性阴极材料的阴极。 形成锂离子电池的方法包括如上所述形成活性阴极材料的步骤; 用活性阴极材料形成阴极电极; 以及通过电解质形成与阴极电接触的阳极电极。 系统包括如上所述的便携式电子设备和电池组或锂离子电池。