摘要:
Methods, devices and systems for wireless communication generate signals by determining whether legacy devices are within a proximal region of the wireless communication. When at least one legacy device is within the proximal region, a frame is formatted to include a preamble field, a signal field, and a data field. Further, the uncoded bits are encoded according to a coding format. The coding format is determined according to bits in the preamble and applicable sub-field lengths.
摘要:
A method for wireless communication begins by determining whether legacy devices are within a proximal region of the wireless communication. The method continues, when at least one legacy device is within the proximal region, formatting a frame to include: a legacy preamble; a signal field; an extended preamble; at least one additional signal field; at least one service field; an inter frame gap; and a data field.
摘要:
A method and system for a bandwidth efficient medium access control (MAC) protocol is provided, which may comprise communicating a request to transmit (RTS) signal to a receiving station to determine if a channel is available for transmission. A clear to send (CTS) acknowledgement signal may be received from the receiving station if the channel is available for transmission. A plurality of medium access control (MAC) protocol data unit (MPDU) fragments separated by a point coordination function (PCF) interframe space (PIFS) interval may be transmitted in response to the received CTS acknowledgement signal.
摘要:
A radio frequency transmitter includes a baseband transmit processing module, a mixing module, a power amplifier, a transmit power sense module, and a transmit power control module. The baseband transmit processing module is operably coupled to encode outbound data into outbound baseband signals in accordance with one of a plurality of encoding protocols. The mixing module is operably coupled to convert the outbound baseband signals into outbound radio frequency signals. The power amplifier is operably coupled to amplify the outbound RF signals prior to transmission to produce amplified outbound RF signals. The transmit power sense module is operably coupled to sense the amplified outbound RF signals to provide a transmit signal strength indication (TSSI). The transmit power control module is operably coupled to adjust gain of the baseband transmit processing module, the mixing module, and/or the power amplifier based on the TSSI and the particular encoding protocol used to produce the baseband signals.
摘要:
Aspects of a method and system for dual mode operation in wireless networks are presented. Aspects of the system include a communicating device that selects an RF channel and a physical layer type. The communicating device may process signals received via the selected RF channel based on the selected physical layer type. The communicating device may determine whether a beacon frame has been detected base on the signals that were received via the selected RF channel and processed based on the selected physical layer type. When a frame is not detected, the communicating device may determine a signal energy level for the received signals. The communicating device may establish an association with an existing network based on detection of the beacon frame or the communicating device may transmit an originating beacon frame based on the determined signal energy level.
摘要:
A method for generating a preamble of a frame for a multiple input multiple output (MIMO) wireless communication begins by, for a first transmit antenna of the MIMO communication, generating a legacy preamble portion for the frame in accordance with a legacy wireless communication protocol, wherein the legacy preamble portion includes at least a first training sequence and a second training sequence and generating a current protocol preamble portion for the frame in accordance with a protocol of the MIMO wireless communication. The processing continues, for at least a second antenna of the MIMO communication, by generating a cyclically shifted legacy preamble portion for the frame, wherein the cyclically shifted legacy preamble portion includes at a cyclically shifted first training sequence and a cyclically shifted second training sequence, wherein the cyclically shifted first training sequence is time-shifted with respect to the first training sequence by a fraction of duration of the legacy preamble portion, and wherein the cyclically shifted second training sequence is time-shifted with respect to the second training sequence by the fraction of duration of the legacy preamble portion and generating a second current protocol preamble portion for the frame in accordance with a protocol of the MIMO wireless communication.
摘要:
A method for configuring a multiple input multiple output (MIMO) wireless communication begins by generating a plurality of preambles for a plurality of transmit antennas. Each of the plurality of preambles includes a carrier detection sequence at a legacy transmit rate, a first channel sounding at the legacy transmit rate, a signal field at the legacy transmit rate, and Z−1 channel soundings at a MIMO transmit rate, where L corresponds to a number of channel soundings. The method continues by simultaneously transmitting the plurality of preambles via the plurality of transmit antennas.
摘要:
Method and system encodes a signal according to a code rate that includes a ratio of uncoded bits to coded bits. An outer Reed-Solomon encoder encodes the signal into codewords. An interleaver converts the codewords into bits of frames for wireless transmission. An inner encoder executes a convolutional code to generate an encoded signal. The encoded signal is transmitted over a plurality of subcarriers associated with a wide bandwidth channel. The convolutional code is punctured and code states are added by the inner encoder to improve the code rate.
摘要:
A method for generating a preamble of a frame for a multiple input multiple output (MIMO) wireless communication begins by, for each transmit antenna of the MIMO wireless communication, generating a carrier detect field, wherein, from transmit antenna to transmit antenna, the carrier detect field is cyclically shifted. The method continues by, for a first grouping of the transmit antennas of the MIMO wireless communication: generating a first guard interval following the carrier detect field; and generating at least one channel sounding field, wherein, from transmit antenna to transmit antenna in the first grouping, the at least one channel sounding field is cyclically shifted, and wherein the at least one channel sounding field follows the first guard interval. The method continues by, when the MIMO wireless communication includes more than the first grouping of the transmit antennas, for another grouping of the transmit antennas: generating at least one other channel sounding field, wherein, from transmit antenna to transmit antenna in the another grouping, the at least one other channel sounding field is cyclically shifted, and wherein the at least one other channel sounding field follows the at least one channel sounding field; and generating the first guard interval prior to the at least one other channel sounding field.
摘要:
Provided is dual mode operation by a communicating device in wireless network. The communicating device selects a radio frequency (RF) channel and a physical layer type. The communicating device processes signals received via the selected RF channel based on the selected physical layer type. The communicating device may determine whether a beacon frame has been detected base on the signals that were received via the selected RF channel and processed based on the selected physical layer type. When a frame is not detected, the communicating device may determine a signal energy level for the received signals. The communicating device may establish an association with an existing network based on detection of the beacon frame or the communicating device may transmit an originating beacon frame based on the determined signal energy level.