摘要:
A method for wireless communication begins by determining whether legacy devices are within a proximal region of the wireless communication. The method continues, when at least one legacy device is within the proximal region, formatting a frame to include: a legacy preamble; a signal field; an extended preamble; at least one additional signal field; at least one service field; an inter frame gap; and a data field.
摘要:
Methods, devices and systems for wireless communication generate signals by determining whether legacy devices are within a proximal region of the wireless communication. When at least one legacy device is within the proximal region, a frame is formatted to include a preamble field, a signal field, and a data field. Further, the uncoded bits are encoded according to a coding format. The coding format is determined according to bits in the preamble and applicable sub-field lengths.
摘要:
Embodiments of a wireless transceiver are provided. Embodiments can be used in multiple-input-multiple-output (MIMO) wireless transceivers. In an embodiment, radio control signal bundles are provided as direct parallel interconnects between digital signal processing modules and the radio module of the wireless transceiver to enable a precise low-latency control of radio functions. In another embodiment, a separate physical line is provided to control each radio setting of the radio module, thereby enabling simultaneous real-time control of any number of radio settings. In a further embodiment, the various digital and analog components of the wireless transceiver are integrated within a single chip of the same process technology.
摘要:
An arrangement of interleavers allocates bits from an input symbol across sub-symbols transmitted via sub-carriers of multiple orthogonal frequency division multiplex (OFDM) carriers. The input bits are allocated in a fashion to provide separation across subcarriers, and rotation of sub-symbols across the OFDM carriers provides additional robustness in the present of signal path impairments.
摘要:
A system for testing a helmet includes a simulated skull comprising a cranial cavity; a brain surrogate disposed inside the cranial cavity; and a cell pack comprising at least one culture well suitable for three-dimensional growth of live neurons therein, the cell pack comprising a retaining plate having at least one opening exposing a portion of a flexible membrane containing the at least one cell culture well, the exposed membrane portion being substantially flush with an exterior surface of the retaining plate, wherein the brain surrogate is configured to closely surround the cell pack inside the simulated skull. Also disclosed is a method of using the system.
摘要:
A system for testing a helmet includes a simulated skull comprising a cranial cavity; a brain surrogate disposed inside the cranial cavity; and a cell pack comprising at least one culture well suitable for three-dimensional growth of live neurons therein, the cell pack comprising a retaining plate having at least one opening exposing a portion of a flexible membrane containing the at least one cell culture well, the exposed membrane portion being substantially flush with an exterior surface of the retaining plate, wherein the brain surrogate is configured to closely surround the cell pack inside the simulated skull. Also disclosed is a method of using the system.
摘要:
A receiver includes digital logic for defining a plurality of signal paths for an ingoing digital signal to determine a frame classification. Frames are classified according to a combination of readings of a plurality of correlation block and relative signal (power) strengths. Power detection is specified for frequency bands of interest. The combination of readings and their corresponding pattern may be used to determine whether a frame is being transmitted in a lower bandwidth channel, an upper bandwidth channel or a large bandwidth channel that overlaps the lower and upper bandwidth channels. A transmission type (legacy, mixed mode, Greenfield) may subsequently be determined based upon the identity of the frame channel.
摘要:
A receiver front end includes a plurality of in-phase and quadrature phase receive processing blocks operable at first and second frequency bands and further includes a plurality of filtering and amplification blocks disposed within a corresponding ingoing signal path, a plurality of received signal strength indicator (RSSI) blocks coupled to receive an ingoing analog signal from a corresponding plurality of nodes disposed throughout the ingoing signal path, each of the plurality of RSSI blocks producing a signal strength indication, and wherein a baseband processor is operable to receive a selected signal strength indication and to produce at least one gain setting to at least one amplification block within the in-phase or quadrature phase receive processing blocks. In operation, the baseband processor receives a signal strength indication from each RSSI block to determine a total amount of gain and appropriate gain distribution within the receive signal path.
摘要:
The present invention provides a method for carrier detection associated with the receipt of MIMO RF packet communications. This involves receiving multiple MIMO RF packet communications with multiple receiver pathways, wherein the RF packet communications each comprise a preamble and data. The RF packet communications are sampled by a carrier detector before, during or after conversion to baseband. The carrier detectors are used to produce a set of carrier detection metrics for each reception pathway. These carrier detection metrics may be combined arithmetically with those of other reception pathways to produce a multi-reception pathway carrier detect. Alternatively, these carrier detection metrics can be processed to produce a logical decision or binary detection signal value associated with each reception pathway, which is then logically combined with the logical decisions of other reception pathways to produce a multi-reception pathway carrier detect.
摘要:
A filter settings generation operation includes sampling colored noise present at the input of a receiver to produce a sampled signal. The sampled signal is spectrally characterized across a frequency band of interest to produce a spectral characterization of the sampled signal. This spectral characterization may not include a signal of interest. The spectral characterization is then modified to produce a modified spectral characterization. Filter settings are then generated based upon the modified spectral characterization. Finally, the input present at the receiver is filtered using the filter settings when the signal of interest is present to whiten colored noise that is present with the signal of interest. In modifying the spectral characterization, pluralities of spectral components of the spectral characterization are independently modified to produce the modified spectral characterization. Modifications to the spectral characterization may be performed in the frequency domain and/or the time domain. Particular modifications include amplifying spectral components, weighting spectral components based upon prior spectral components, and averaging spectral components with prior spectral components.