摘要:
Ionic compounds comprising: (a) a cationic radical of a charge transporting compound which has one or more reactive groups; and (b) a counter anion. The ionic compound may have the following formula: The reactive functional groups on the cation allow the ionic compound to cross-link with a host charge transport compound. Such ionic compounds may have various properties, such as thermodynamic stability, hole injection/transport capabilities, electrochemical durability, and/or solubility in organic solvents that allows them to be useful in organic electronic devices. Also provided are electronic devices made using the ionic compounds of the present invention, and methods of making an electronic device.
摘要:
A method of forming an organic layer by using a liquid composition comprising a small molecule organic semiconductor material mixed in a ketone solvent. The liquid composition is deposited on a surface to form the organic layer. The ketone solvent may be an aromatic ketone solvent, such as a tetralone solvent. The organic semiconductor material may be cross-linkable to provide a cross-linked organic layer. The method can be used to make organic electronic devices, such as organic light emitting devices. In another aspect, the liquid composition comprises a small molecule organic semiconductor material mixed in an aromatic ether solvent. Also, provided are liquid compositions which can be used to make organic layers.
摘要:
A method of forming an organic layer by using a liquid composition comprising a small molecule organic semiconductor material mixed in a ketone solvent. The liquid composition is deposited on a surface to form the organic layer. The ketone solvent may be an aromatic ketone solvent, such as a tetralone solvent. The organic semiconductor material may be cross-linkable to provide a cross-linked organic layer. The method can be used to make organic electronic devices, such as organic light emitting devices. In another aspect, the liquid composition comprises a small molecule organic semiconductor material mixed in an aromatic ether solvent. Also, provided are liquid compositions which can be used to make organic layers.
摘要:
A liquid composition (e.g., inkjet fluid) for forming an organic layer of an organic electronic device (e.g., an OLED). The liquid composition comprises a small molecule organic semiconductor material mixed in an aromatic solvent. The aromatic solvent, when left as a residue in the organic layer, is capable of presenting relatively reduced resistivity to charge transport or facilitating charge transport in the organic layer that is deposited, as compared to other conventional solvents. In certain embodiments, the aromatic solvent compound has the following formula: wherein R represents one or more optional substituents on the benzene ring, wherein each R is independently an aliphatic group containing from 1-15 carbon atoms; and wherein X is a substitution group that contains an electron-withdrawing group selected from nitrile, sulfonyl, or trifluoromethyl.
摘要:
A liquid composition (e.g., inkjet fluid) for forming an organic layer of an organic electronic device (e.g., an OLED). The liquid composition comprises a small molecule organic semiconductor material mixed in an aromatic solvent. The aromatic solvent, when left as a residue in the organic layer, is capable of presenting relatively reduced resistivity to charge transport or facilitating charge transport in the organic layer that is deposited, as compared to other conventional solvents. In certain embodiments, the aromatic solvent compound has the following formula: wherein R represents one or more optional substituents on the benzene ring, wherein each R is independently an aliphatic group containing from 1-15 carbon atoms; and wherein X is a substitution group that contains an electron-withdrawing group selected from nitrile, sulfonyl, or trifluoromethyl.
摘要:
Ionic compounds comprising: (a) a cationic radical of a charge transporting compound which has one or more reactive groups; and (b) a counter anion. The reactive functional groups on the cation allow the ionic compound to cross-link with a host charge transport compound. Such ionic compounds may have various properties, such as thermodynamic stability, hole injection/transport capabilities, electrochemical durability, and/or solubility in organic solvents that allows them to be useful in organic electronic devices. Also provided are electronic devices made using the ionic compounds of the present invention, and methods of making an electronic device.
摘要:
A halogenated bisdiarylaminopolycyclic aromatic compound, polymers made therefrom, and polymeric light emitting diode devices using the polymers are described. The halogenated compound is represented by formula (I), wherein Ar and Ar′ are each independently substituted or unsubstituted aryl groups and Z is a polycyclic arylene group, wherein at least one of the Ar′ groups is a haloaryl group. Devices using polymers prepared from the halogenated compound exhibit improved performance and longer lifetime, presumably as a result of the presence of the geometrically constrained diarylaminopolycyclic aromatic groups in the polymer backbone.
摘要:
Crosslinkable substituted fluorene compounds; oligomers and polymers prepared from such crosslinkable compounds; films and coatings; and multilayer electronic devices comprising such films are disclosed.
摘要:
The present invention relates to a method for preparing polymeric films, preferably electroactive films, with enhanced physical properties by the steps of applying to a substrate a solution of a polymer containing pendant labile solubilizing groups, then removing the solvent and a sufficient concentration of the labile solubilizing groups render the polymer less soluble in the solvent than before the labile groups were removed. It is believed that the removal of pendant soluble groups a) permits optimization of the semiconducting backbone for charge transport performance, b) allows direct control of microstructure in the final film, and c) renders the final film more robust during subsequent process steps needed to construct multilayer devices.
摘要:
An organic OLED having a cathode formed from a first conducting layer, an electroluminescent layer including an oxadiazole compound, and an anode constructed from a second conducting layer which is transparent to light generated by the electroluminescent layer. In one embodiment, an electron transport layer is sandwiched between the anode and electroluminescent layers. Other embodiments utilize a hole transport layer between the electroluminescent layer and the anode either with or without the electron transport layer. In one embodiment, the anode is constructed from a layer of indium tin oxide and a layer of a hole transport material that bonds to indium tin oxide and which has an energy band intermediate between that of indium tin oxide and that of the hole transport layer.