摘要:
An optoelectronic transceiver that has integrated optical and electronic components, and can be passively aligned by a flip-chip method and a mechanical method is provided. The optoelectronic transceiver can be constructed by the key components of a circuit board, a silicon sub-mount, at least two IC chips formed on a silicon sub-mount, a microlens array, an optical fiber, and a receptacle for housing the silicon sub-mount, the at least two IC chips, the microlens array and the optical fiber connector in an aligned configuration. The at least two IC chips preferably include a laser diode, a laser diode driver, a photodetector and a photodetector amplifier. The mechanical alignment between a microlens array and a silicon sub-mount is performed by indentations provided in the surfaces of the two parts and the placement of spacer balls in the indentations.
摘要:
A biosignal measurement module is provided and includes a biosignal measurement unit, a pose detection unit, and a processing unit. The biosignal measurement unit measures an electrocardiogram signal and a pulse signal of a subject. The pose detection unit detects a position of the biosignal measurement module and outputs position signals. The processing unit receives the electrocardiogram signal, the pulse signal, and the position signals. The processing unit generates a height variation parameter, which indicates the height difference between the position of the biosignal measurement module and a reference position, according to the position signals. The processing unit calculates a current pulse transit time according to the electrocardiogram signal and the pulse signal and compensates for the current pulse transit time according to the height variation parameter to obtain a compensated pulse transit time. The processing unit obtains a blood pressure signal according to the compensated pulse transit time.
摘要:
A fiber waveguide optical subassembly uses the multi-mode fiber to increase the alignment tolerance between the active optical element and the waveguide. The filter is thinner to lower the dispersion due to the optical coupling gap. The subassembly further combines the optical bench to achieve passive positioning. Therefore it reduces the cost and enhances the transmission rate.
摘要:
A fiber waveguide optical subassembly uses the multi-mode fiber to increase the alignment tolerance between the active optical element and the waveguide. The filter is thinner to lower the dispersion due to the optical coupling gap. The subassembly further combines the optical bench to achieve passive positioning. Therefore it reduces the cost and enhances the transmission rate.
摘要:
A canted-fiber duplex optical subassembly is disclosed herein. The optical subassembly transmits and receives optical signals by way of a single optical fiber, which has a canted surface on one end. A light source sends transmission optical signals, which are refracted through the canted surface and then enter the optical fiber. Reception optical signals in the optical fiber are reflected by the canted surface and are then received by an optical detector.
摘要:
A parallel optical subassembly module structure comprises an opto-electronic device array, a base with a reflecting slope, and a micro-lens array plate with an inclined plane provided with a specific angle. The optical signal emitted from the opto-electronic device array reflects by the reflecting slope and is incident into the inclined plane of the micro-lens array plate with the specific angle. The inclined plane rectifies the optical signal to output in horizontal direction. Then the optical signal couples with the external fibers through each micro lens of the micro-lens array. The pathway of receiving the optical signal is the same as described above, but in reverse direction.
摘要:
A parallel optical subassembly module structure comprises an opto-electronic device array, a base with a reflecting slope, and a micro-lens array plate with an inclined plane provided with a specific angle. The optical signal emitted from the opto-electronic device array reflects by the reflecting slope and is incident into the inclined plane of the micro-lens array plate with the specific angle. The inclined plane rectifies the optical signal to output in horizontal direction. Then the optical signal couples with the external fibers through each micro lens of the micro-lens array. The pathway of receiving the optical signal is the same as described above, but in reverse direction.
摘要:
A biosignal measurement module is provided and includes a biosignal measurement unit, a pose detection unit, and a processing unit. The biosignal measurement unit measures an electrocardiogram signal and a pulse signal of a subject. The pose detection unit detects a position of the biosignal measurement module and outputs position signals. The processing unit receives the electrocardiogram signal, the pulse signal, and the position signals. The processing unit generates a height variation parameter, which indicates the height difference between the position of the biosignal measurement module and a reference position, according to the position signals. The processing unit calculates a current pulse transit time according to the electrocardiogram signal and the pulse signal and compensates for the current pulse transit time according to the height variation parameter to obtain a compensated pulse transit time. The processing unit obtains a blood pressure signal according to the compensated pulse transit time.