Abstract:
The present invention provides an off-chip apparatus and a method for driving micro fluid wherein one or a plurality of impedance members, plunger positioning members and pressure difference design are used to drive the fluid and control the flow speed in a microfluidic system. The present invention also provides a method for driving fluid and controlling flow speed, wherein a slow pressure balancing mechanism is produced by the foregoing device so the flow speed of fluid can be controlled.
Abstract:
The object of the present invention is to provide a sample assay structure in a microfluidic chip for quantitative analysis which comprises a sample inlet port for inputting a testing sample; an analyte detection region, coupled to the sample inlet port, consisting of at least one microfluidic channel, in which a plurality of immobilized substances capable of reacting with the analyte are placed; and a fluid driving device, capable of controlling the speed of the flow of the test sample through the analyte detection region, allowing the quantity of the analyte be indicated by the length of the portion of the microfluidic channel where the analyte reacted with the immobilized substances.
Abstract:
An optoelectronic transceiver that has integrated optical and electronic components, and can be passively aligned by a flip-chip method and a mechanical method is provided. The optoelectronic transceiver can be constructed by the key components of a circuit board, a silicon sub-mount, at least two IC chips formed on a silicon sub-mount, a microlens array, an optical fiber, and a receptacle for housing the silicon sub-mount, the at least two IC chips, the microlens array and the optical fiber connector in an aligned configuration. The at least two IC chips preferably include a laser diode, a laser diode driver, a photodetector and a photodetector amplifier. The mechanical alignment between a microlens array and a silicon sub-mount is performed by indentations provided in the surfaces of the two parts and the placement of spacer balls in the indentations.
Abstract:
The present invention provides an off-chip apparatus and a method for driving micro fluid wherein one or a plurality of impedance members, plunger positioning members and pressure difference design are used to drive the fluid and control the flow speed in a microfluidic system. The present invention also provides a method for driving fluid and controlling flow speed, wherein a slow pressure balancing mechanism is produced by the foregoing device so the flow speed of fluid can be controlled.