摘要:
A method of making a reconstructed electrode having a plurality of nanostructured thin catalytic layers is provided. The method includes combining a donor decal comprising at least one nanostructured thin catalytic layer on a substrate with an acceptor decal comprising a porous substrate and at least one nanostructured thin catalytic layer. The donor decal and acceptor decal are bonded together using a temporary adhesive, and the donor substrate is removed. The temporary adhesive is then removed with appropriate solvents. Catalyst coated proton exchange membranes and catalyst coated diffusion media made from the reconstructed electrode decals having a plurality of nanostructured thin catalytic layers are also described.
摘要:
A method of making a reconstructed electrode having a plurality of nanostructured thin catalytic layers is provided. The method includes combining a donor decal comprising at least one nanostructured thin catalytic layer on a substrate with an acceptor decal comprising a porous substrate and at least one nanostructured thin catalytic layer. The donor decal and acceptor decal are bonded together using a temporary adhesive, and the donor substrate is removed. The temporary adhesive is then removed with appropriate solvents. Catalyst coated proton exchange membranes and catalyst coated diffusion media made from the reconstructed electrode decals having a plurality of nanostructured thin catalytic layers are also described.
摘要:
A diffusion medium for use in a PEM fuel cell comprising a thin perforated layer having variable size and frequency of perforation patterns incorporated into a microporous layer on a first side of a porous substrate layer, wherein the diffusion medium is adapted to improve water management and performance of the fuel cell.
摘要:
A method of transferring nanostructured thin catalytic layers to a gas diffusion layer and thus making a catalyst coated diffusion media is described. The method includes treating the gas diffusion layer with a temporary adhesive to temporarily increase the adhesion strength within the microporous layer and to carbon fiber paper substrate, transferring the nanostructured thin catalytic layer to the microporous side of a gas diffusion media layer. The nanostructured thin catalytic layer can then be further processed, including adding additional components or layers to the nanostructured thin catalytic layer on the gas diffusion media layer. Preparation of catalyst coated diffusion media and a catalyst coated diffusion media based membrane electrode assembly (MEA) are also described.
摘要:
A fuel cell including a water blocking layer positioned between anode gas flow channels and a gas diffusion media. The blocking layer prevents water from propagating through the gas diffusion media layer and entering the anode flow channels, while allowing gas from the flow channels to flow through the diffusion media layer to the membrane. A water accumulation channel can be provided around the perimeter of the gas diffusion media layer where blocked water is accumulated, and allowed to expand during cell freezing. A porous capillary wick can be provided in the accumulation channel for wicking water to the inlet end of the flow channels where it is used to humidify the anode gas coming into the fuel cell. The wick can have a tapered configuration so that it has a larger diameter at the gas input end of the flow channels.
摘要:
A diffusion media and micro-porous media combination for a fuel cell. A diffusion layer is composed of a diffusion media and has a first (electrode) side and an opposite second (flowfield) side, wherein at least one of the first and second sides has a geometric pattern formed therein comprising a multiplicity of mutually spaced apart regions. A micro-porous media fills the multiplicity of regions and a micro-porous layer composed of the micro-porous media is continuously applied to the first surface.
摘要:
A method of transferring a nanostructured thin catalytic layer from its carrying substrate to a porous transfer substrate and further processing and restructuring the nanostructured thin catalytic layer on the porous transfer substrate is provided. The method includes transferring the nanostructured catalytic layer from its carrying substrate to a transfer substrate. The nanostructured catalytic layer then is processed and reconstructed, including removing the residual materials and adding additional components or layers to the nanostructured catalytic layer, on the transfer substrate. Methods of fabricating catalyst coated membranes with the reconstructed electrode including the nanostructured thin catalytic layer, reconstructed electrode decals, and catalyst coated proton exchange membranes are also described.
摘要:
A method of making an electrode is provided. The method includes providing an electrocatalyst decal comprising a carrying substrate having a nanostructured thin catalytic layer thereon; providing a transfer substrate with an adjacent adhesive layer; adhering the nanostructured thin catalytic layer adjacent to the adhesive layer to form a composite structure; removing the carrying substrate from the composite structure; and removing the transfer substrate from the composite structure to form the stand-alone nanostructured thin catalytic film comprising the adhesive layer with the nanostructured thin catalytic layer adhered thereto. A stand alone nanostructured thin catalytic film and methods of constructing electrodes with the stand alone nanostructured thin catalytic films are also described.
摘要:
A method of making an electrode is provided. The method includes providing an electrocatalyst decal comprising a carrying substrate having a nanostructured thin catalytic layer thereon; providing a transfer substrate with an adjacent adhesive layer; adhering the nanostructured thin catalytic layer adjacent to the adhesive layer to form a composite structure; removing the carrying substrate from the composite structure; and removing the transfer substrate from the composite structure to form the stand-alone nanostructured thin catalytic film comprising the adhesive layer with the nanostructured thin catalytic layer adhered thereto. A stand alone nanostructured thin catalytic film and methods of constructing electrodes with the stand alone nanostructured thin catalytic films are also described.
摘要:
A method of making an electrode ink containing nanostructured catalyst elements is described. The method comprises providing an electrocatalyst decal comprising a carrying substrate having a nanostructured thin catalytic layer thereon, the nanostructure thin catalytic layer comprising nanostructured catalyst elements; providing a transfer substrate with an adhesive thereon; transferring the nanostructured thin catalytic layer from the carrying substrate to the transfer substrate; removing the nanostructured catalyst elements from the transfer substrate; providing an electrode ink solvent; and dispersing the nanostructured catalyst elements in the electrode ink solvent. Electrode inks, coated substrates, and membrane electrode assemblies made from the method are also described.