摘要:
A diffusion medium for use in a PEM fuel cell comprising a thin perforated layer having variable size and frequency of perforation patterns incorporated into a microporous layer on a first side of a porous substrate layer, wherein the diffusion medium is adapted to improve water management and performance of the fuel cell.
摘要:
A method of making a reconstructed electrode having a plurality of nanostructured thin catalytic layers is provided. The method includes combining a donor decal comprising at least one nanostructured thin catalytic layer on a substrate with an acceptor decal comprising a porous substrate and at least one nanostructured thin catalytic layer. The donor decal and acceptor decal are bonded together using a temporary adhesive, and the donor substrate is removed. The temporary adhesive is then removed with appropriate solvents. Catalyst coated proton exchange membranes and catalyst coated diffusion media made from the reconstructed electrode decals having a plurality of nanostructured thin catalytic layers are also described.
摘要:
A method of making a reconstructed electrode having a plurality of nanostructured thin catalytic layers is provided. The method includes combining a donor decal comprising at least one nanostructured thin catalytic layer on a substrate with an acceptor decal comprising a porous substrate and at least one nanostructured thin catalytic layer. The donor decal and acceptor decal are bonded together using a temporary adhesive, and the donor substrate is removed. The temporary adhesive is then removed with appropriate solvents. Catalyst coated proton exchange membranes and catalyst coated diffusion media made from the reconstructed electrode decals having a plurality of nanostructured thin catalytic layers are also described.
摘要:
A fuel cell including a water blocking layer positioned between anode gas flow channels and a gas diffusion media. The blocking layer prevents water from propagating through the gas diffusion media layer and entering the anode flow channels, while allowing gas from the flow channels to flow through the diffusion media layer to the membrane. A water accumulation channel can be provided around the perimeter of the gas diffusion media layer where blocked water is accumulated, and allowed to expand during cell freezing. A porous capillary wick can be provided in the accumulation channel for wicking water to the inlet end of the flow channels where it is used to humidify the anode gas coming into the fuel cell. The wick can have a tapered configuration so that it has a larger diameter at the gas input end of the flow channels.
摘要:
A diffusion media and micro-porous media combination for a fuel cell. A diffusion layer is composed of a diffusion media and has a first (electrode) side and an opposite second (flowfield) side, wherein at least one of the first and second sides has a geometric pattern formed therein comprising a multiplicity of mutually spaced apart regions. A micro-porous media fills the multiplicity of regions and a micro-porous layer composed of the micro-porous media is continuously applied to the first surface.
摘要:
A detection method for enabling gas composition observation during fuel cell system start-up is described. In one embodiment, the method includes initiating a flow of hydrogen to the anode to pressurize the anode; opening an anode flow valve; determining if an anode pressure exceeds an anode pressure threshold; enabling anode flow set point detection after a first predetermined time if the anode pressure exceeds the anode pressure threshold; monitoring an anode flow set point using the anode flow set point detection; determining if the anode flow set point exceeds an anode flow set point threshold; and closing the anode flow valve after a second predetermined time if the anode flow set point exceeds the anode flow set point threshold.
摘要:
A fuel cell component includes a first fluid distribution layer, a second fluid distribution layer, a cap layer, a third fluid distribution layer, and a pair of fluid diffusion medium layers. The individual layers are polymeric, mechanically integrated, and formed from a radiation-sensitive material. The first fluid distribution layer, the second fluid distribution layer, the cap layer, the third fluid distribution layer, and the pair of fluid diffusion medium layers are coated with an electrically conductive material. A pair of the fuel cell components may be arranged in a stack with a membrane electrode assembly therebetween to form a fuel cell.
摘要:
A fluid distribution insert adapted to be received within an inlet header of a fuel cell assembly. The fluid distribution insert includes a hollow insert with a first end and a second end. An inlet is formed at the first end of the hollow insert in fluid communication with a source of a reactant gas and adapted to receive the reactant gas therein. An outlet is formed intermediate the first end and the second end. The outlet is adapted to deliver the reactant gas to a plurality of fuel cells of the fuel cell assembly, wherein the hollow insert delivers the reactant gas to the fuel cells in a substantially simultaneous and uniform manner.
摘要:
A method for filling a fuel cell system with a fuel during start-up is disclosed, the method including the steps of providing a fuel cell stack having a plurality of fuels cells, each fuel cell having an active area, the fuel cell stack including an anode supply manifold and an anode exhaust manifold, the anode supply manifold and in fluid communication with a source of fuel; providing an anode sub-system in fluid communication with an anode side of the fuel cell stack; and supplying the fuel to the fuel cell stack substantially uniformly and substantially simultaneously to compress any fluids in the fuel cell stack into a volume between an end of each active area adjacent to the anode exhaust manifold and an outlet of the anode sub-system.
摘要:
A method for determining the amount of fuel flow from a high pressure gas tank to the anode side of a fuel cell stack through pulsed injector. The anode sub-system pressure is measured just before the injector pulse and just after injector pulse and a difference between the pressures is determined. The difference between the pressures, the volume of the anode sub-system, the ideal gas constant, the anode sub-system temperature, the fuel consumed from the reaction in the fuel cell stack during the injection event and the fuel cross-over through membranes in the fuel cells of the fuel cell stack are used to determine the amount of hydrogen gas injected by the injector.