Abstract:
A DC servo loop may track DC offset changes of an input signal and apply feedback to amplifiers to adjust a DC offset of the input signal. The DC servo loop may include digital loop tracking and analog loop tracking components. The digital loop tracking components may track small changes in the DC offset. When the DC offset exceeds a certain threshold, analog loop tracking may be activated to apply feedback to the amplifiers to adjust the DC offset. The adjustments to the DC offset may be delayed until an amplitude of the input signal exceeds a threshold to reduce contribution to noise in the input signal.
Abstract:
A voltage selector circuit may be coupled to transistors to protect one or more inputs of the transistor from exceeding a safe operating range. In one example, a cross-coupled pair of transistors may be coupled to a gate of a transistor to select between a first voltage and a cascoded voltage that is a safe bias voltage. Thus, the transistor may be protected from unsafe gate-to-source voltages. The voltage selector may be used to build circuits, such as invertors, level shifter, NAND gates, and NOR gates, that function with power supply voltages that may exceed the safe operating range of the transistors.
Abstract:
A voltage selector circuit may be coupled to transistors to protect one or more inputs of the transistor from exceeding a safe operating range. In one example, a cross-coupled pair of transistors may be coupled to a gate of a transistor to select between a first voltage and a cascoded voltage that is a safe bias voltage. Thus, the transistor may be protected from unsafe gate-to-source voltages. The voltage selector may be used to build circuits, such as invertors, level shifter, NAND gates, and NOR gates, that function with power supply voltages that may exceed the safe operating range of the transistors.