摘要:
A network management system for managing communications in a cellular communication network comprising an access point operably coupled to an access controller. The network management system comprises an access controller configuration logic module arranged to configure the access controller with configuration information. The network management system further comprises an access point configuration logic module arranged to configure the access point with configuration information comprising, at least in part, configuration information intended for the access controller.
摘要:
A network management system for managing communications in a cellular communication network comprising an access point operably coupled to an access controller. The network management system comprises an access controller configuration logic module arranged to configure the access controller with configuration information. The network management system further comprises an access point configuration logic module arranged to configure the access point with configuration information comprising, at least in part, configuration information intended for the access controller.
摘要:
Techniques are provided to perform location verification of a radio access point device such as femtocell. The radio access point device is configured to receive signals from global positioning system (GPS) satellite transmitters to produce GPS location data representing a GPS location of the radio access point device. The radio access point device is also configured to receive wireless signals at one or more specified channels and to generate radio environment data representing characteristics of received wireless signals. A comparison is made between the GPS location data and reference GPS location data for an expected location of the radio access point device. When the GPS location data substantially matches the reference GPS location data, operations of the radio access point device are enabled and the radio environment data is stored to be used as reference radio environment data for purposes of subsequent location verification of the radio access point device.
摘要:
An example method is provided in one example embodiment and includes receiving, by a first Home eNodeB (HeNB), a first attach request from a user equipment (UE) for attaching a subscriber associated with the UE to a small cell network; determining whether the subscriber has transitioned into the small cell network from a macro cell network; exchanging, based on the determination, a first pair of messages between the first HeNB and the UE to determine an International Mobile Subscriber Identity (IMSI) of the subscriber; and exchanging, based on the determination, one or more second pairs of messages between the first HeNB and the UE to advance a sequence number for Non-Access Stratum (NAS) messages for the UE to a value corresponding to a received sequence number for the first attach request from the UE.
摘要:
Systems and methods for small cell idle mode mobility include receiving, at a first small cell of a preconfigured cluster of small cells, a mobility area update request from a user equipment (UE). The method can also include registering location information of the UE with a small cell gateway, and retrieving a core network periodic timer for the UE from a mobility server. If certain conditions are met, the first small cell forwards the mobility area update request to a core network via the small cell gateway. Otherwise, the method can include the first small cell updating the location information of the UE with the mobility server, generating a locally-generated mobility area update accept message, and sending a locally generated mobility area update accept message to the UE along with a local periodic timer instructing the UE to send another mobility area update request when the local periodic timer expires.
摘要:
Systems and methods for small cell idle mode mobility include receiving, at a first small cell of a preconfigured cluster of small cells, a mobility area update request from a user equipment (UE). The method can also include registering location information of the UE with a small cell gateway, and retrieving a core network periodic timer for the UE from a mobility server. If certain conditions are met, the first small cell forwards the mobility area update request to a core network via the small cell gateway. Otherwise, the method can include the first small cell updating the location information of the UE with the mobility server, generating a locally-generated mobility area update accept message, and sending a locally generated mobility area update accept message to the UE along with a local periodic timer instructing the UE to send another mobility area update request when the local periodic timer expires.
摘要:
An example method is provided in one example embodiment and includes receiving a request to relocate a user equipment (UE) from a source macro radio to an ambiguous small cell access point (AP), wherein the request includes a target cell identity (ID) encoded with a source macro cell identifier for the source macro radio and a target sub-carrier identifier for the ambiguous small cell AP; determining potential target small cell APs for relocation of the first UE using the using the first target cell ID, wherein each of the potential target small cell APs are within a coverage area of the source macro radio and operate using the target sub-carrier identifier; and preparing, for each of the potential target small cell APs, a common channel to receive relocation of the first UE. The first UE can relocate to a particular target small cell access point using the common channel.
摘要:
Communication parameter selection techniques are presented to reduce interference in small cells of wireless networks. A list of neighboring radio access points with respect to a particular radio access point in a wireless network is obtained. The list includes a unique identifier for each neighboring radio access point. A set of candidate communications parameters are obtained for use in the wireless network by the particular radio access point. A prediction is made of candidate communications parameters in the set of candidate communications parameters which can be used by the neighboring radio access points. The communication parameters in the set of candidate communication parameters which are available for use by the particular access point are determined based on the predicted set of communications parameters. A communication parameter is selected for use by the particular radio access point based on the communication parameters determined to be available for use.
摘要:
Techniques are provided to perform location verification of a radio access point device such as femtocell. The radio access point device is configured to receive signals from global positioning system (GPS) satellite transmitters to produce GPS location data representing a GPS location of the radio access point device. The radio access point device is also configured to receive wireless signals at one or more specified channels and to generate radio environment data representing characteristics of received wireless signals. A comparison is made between the GPS location data and reference GPS location data for an expected location of the radio access point device. When the GPS location data substantially matches the reference GPS location data, operations of the radio access point device are enabled and the radio environment data is stored to be used as reference radio environment data for purposes of subsequent location verification of the radio access point device.
摘要:
An example method is provided in one example embodiment and includes receiving a request to relocate a user equipment (UE) from a source macro radio to an ambiguous small cell access point (AP), wherein the request includes a target cell identity (ID) encoded with a source macro cell identifier for the source macro radio and a target sub-carrier identifier for the ambiguous small cell AP; determining potential target small cell APs for relocation of the first UE using the using the first target cell ID, wherein each of the potential target small cell APs are within a coverage area of the source macro radio and operate using the target sub-carrier identifier; and preparing, for each of the potential target small cell APs, a common channel to receive relocation of the first UE. The first UE can relocate to a particular target small cell access point using the common channel.