Abstract:
A system and method for decoating a scrap coated metal in a leach solution uses direct measuring of the corrosion potential of the scrap metal in the system to determine the progress of the decoating process and end the process when the scrap is decoated. Corrosion potential measurements are made using a working electrode comprising more than one piece of scrap coated-metal within the system. The decoating system and method may include a system for recycling leach solution.
Abstract:
A system and method for decoating a scrap coated metal in a leach solution uses direct measuring of the corrosion potential of the scrap metal in the system to determine the progress of the decoating process and end the process when the scrap is decoated. Corrosion potential measurements are made using a working electrode comprising more than one piece of scrap coated-metal within the system. The decoating system and method may include a system for recycling leach solution.
Abstract:
Disclosed herein is a treated ore solid comprising a reduced amount of a contaminant, for example arsenic, compared to the ore solid prior to treatment. Also disclosed are temperature and pressure modifications, parameters, and methods for treating an ore solid by pressure oxidation leaching of enargite concentrates. The disclosed methods and processes may be applied to copper sulfide orebodies and concentrates containing arsenic. In some cases, the disclosed methods and systems extract, remove, or reduce contaminants, for example arsenic, from an ore containing solution at moderately increased temperature, pressure, and oxygen concentration, and in the presence of an acid.
Abstract:
Disclosed herein is a treated ore solid comprising a reduced amount of a contaminant, for example arsenic, compared to the ore solid prior to treatment. Also disclosed are temperature and pressure modifications, parameters, and methods for treating an ore solid by pressure oxidation leaching of enargite concentrates. The disclosed methods and processes may be applied to copper sulfide orebodies and concentrates containing arsenic. In some cases, the disclosed methods and systems extract, remove, or reduce contaminants, for example arsenic, from an ore containing solution at moderately increased temperature, pressure, and oxygen concentration, and in the presence of an acid.
Abstract:
Disclosed herein are methods, techniques, and processes for enhancing the purity of a mixed rare earth solution. In one embodiment the rare earth mixture may include Lanthanum, Cerium, Praseodymium, Neodymium, Promethium, Samarium, Europium, Gadolinium, Terbium, Dysprosium, Holmium, Erbium, Thulium, Ytterbium, Lutetium, Scandium, and/or Yttrium. In one embodiment, the resin is a chelating resin that interacts poorly with one or more rare earth elements. In one embodiment a rare earth is selectively excluded for example, Lanthanum (sometimes considered a transition metal), Cerium, Praseodymium, Neodymium, Promethium, Samarium, Europium, Gadolinium, Terbium, Dysprosium, Holmium, Erbium, Thulium, Ytterbium, Lutetium, Scandium, and/or Yttrium. In one embodiment, yttrium is selectively excluded from the column.
Abstract:
Disclosed herein are methods and systems for recovery of ancylite, a rare earth mineral comprising strontium carbonate, from rare earth ore. In many embodiments, the disclosed methods and systems provide for recovery of greater than 50% of the ancylite from an ancylite containing ore. In many embodiments, the ore is subjected to flotation in the presence of an acid, for example a hydroxamic acid, such as octanohydroxamic acid. The ore may also be subjected to magnetic separation, for example wet high intensity magnetic separation.
Abstract:
Disclosed herein are methods, techniques, and processes for enhancing the purity of a mixed rare earth solution. In one embodiment the rare earth mixture may include Lanthanum, Cerium, Praseodymium, Neodymium, Promethium, Samarium, Europium, Gadolinium, Terbium, Dysprosium, Holmium, Erbium, Thulium, Ytterbium, Lutetium, Scandium, and/or Yttrium. In one embodiment, the resin is a chelating resin that interacts poorly with one or more rare earth elements. In one embodiment a rare earth is selectively excluded for example, Lanthanum (sometimes considered a transition metal), Cerium, Praseodymium, Neodymium, Promethium, Samarium, Europium, Gadolinium, Terbium, Dysprosium, Holmium, Erbium, Thulium, Ytterbium, Lutetium, Scandium, and/or Yttrium. In one embodiment, yttrium is selectively excluded from the column.