Abstract:
Processes for the bioconversion of syngas to oxygenated organic compound are disclosed that reliably, cost-effectively and efficiently supply sulfur nutrient to microorganisms contained in acidic, aqueous fermentation menstrua. In the processes of this invention, at least a portion of the sulfur nutrient for the population of microorganisms in the aqueous menstruum is provided as calcium sulfite, and the presence of undissolved calcium sulfite is maintained in the aqueous menstruum.
Abstract:
A process for conversion of syngas to liquid products that serve as surface acting agents uses the gas stream at a relatively low pressure to eliminate the use of a compressor. The process uses a liquid stream as the primary energy input to a gas injector that intensely mixes gas and the liquid with reduced compression costs while the presence of the liquid product maintains the gas-liquid dispersion as it flows downward to build a static pressure head. The process lowers the required gas pressure by adjusting the elevation of the gas injector such that a conduit receives the gas-liquid dispersion from the outlet of the injector and confines it as it travels downward to enter the bottom of a column of liquid. The liquid product provides a surface acting agent that prolongs the creation and duration of microbubbles in the gas-liquid dispersion.
Abstract:
Continuous processes for the anaerobic bioconversion of syngas to oxygenated hydrocarbonaceous products, in particular lower alkanols, are disclosed in which nutrients, including micronutrients, and lower carboxylate anion are recovered from at least a portion of an aqueous distillation fraction from a distillation unit operation to recover lower alkanols by using a “tight” ultrafiltration membrane. At least about 75 percent of the water permeates the ultrafiltration membrane. The tight ultrafiltration membrane rejects sufficient components that are adverse to the microorganisms used in the bioconversion that continuous fermentation operations over long durations can be achieved.
Abstract:
Integrated processes are provided for syngas refining and bioconversion of syngas to oxygenated organic compound. In the integrated processes ammonia contained in the syngas is recovered and used as a source of nitrogen and water for the fermentation. The integrated processes first remove tars from syngas by scrubbing using a first aqueous medium under conditions that ammonium bicarbonate is unstable. With tars removed, contact between the syngas and a second aqueous medium enables ammonia and carbon dioxide to be removed from the syngas without undue removal of components adverse to the fermentation, processing or oxygenated product such as benzene, toluene, xylene, ethylene, acetylene, and hydrogen cyanide. At least a portion of the second aqueous medium is supplied as a source of water and ammonia for the fermentation.
Abstract:
Continuous processes for the anaerobic bioconversion of syngas to oxygenated hydrocarbonaceous products, in particular lower alkanols, are disclosed in which nutrients, including micronutrients, and lower carboxylate anion are recovered from at least a portion of an aqueous distillation fraction from a distillation unit operation to recover lower alkanols by using a “tight” ultrafiltration membrane. At least about 75 percent of the water permeates the ultrafiltration membrane. The tight ultrafiltration membrane rejects sufficient components that are adverse to the microorganisms used in the bioconversion that continuous fermentation operations over long durations can be achieved.
Abstract:
Processes are disclosed for economically and effectively removing co-produced oxygenated organic compound from an anaerobic, aqueous fermentation broth used for the bioconversion of syngas to product oxygenated organic compound. Nitrate anion is added to the broth and the broth is contacted with denitrifying microorganisms that bioconvert the nitrate and organic compounds in the broth to reduced nitrogen compound and carbon dioxide.
Abstract:
Integrated processes are provided for syngas refining and bioconversion of syngas to oxygenated organic compound. In the integrated processes ammonia contained in the syngas is recovered and used as a source of nitrogen and water for the fermentation. The integrated processes first remove tars from syngas by scrubbing using a first aqueous medium under conditions that ammonium bicarbonate is unstable. With tars removed, contact between the syngas and a second aqueous medium enables ammonia and carbon dioxide to be removed from the syngas without undue removal of components adverse to the fermentation, processing or oxygenated product such as benzene, toluene, xylene, ethylene, acetylene, and hydrogen cyanide. At least a portion of the second aqueous medium is supplied as a source of water and ammonia for the fermentation.
Abstract:
The methods are disclosed for sustaining a population of microorganisms in an aqueous fermentation broth used in a process to convert syngas to alcohol when the supply of syngas is decreased or ceased. The methods involve supplying at least one reducible anion in a rate an amount sufficient to maintain the population of microorganisms.
Abstract:
Ethanol and other liquid products are produced by contacting syngas components such as CO or a mixture of CO2 and H2 with a surface of a membrane under anaerobic conditions and transferring these components into contact with a biofilm on the opposite side of the membrane. These steps provide a stable system for producing liquid products such as ethanol, butanol and other chemicals. The gas fed on the membrane's gas contact side transports through the membrane to form a biofilm of anaerobic microorganisms that converted the syngas to desired liquid products. The system can sustain production with a variety of microorganisms and membrane configurations.
Abstract:
The methods are disclosed for sustaining a population of microorganisms in an aqueous fermentation broth used in a process to convert syngas to alcohol when the supply of syngas is decreased or ceased. The methods involve supplying at least one reducible anion in a rate an amount sufficient to maintain the population of microorganisms.