摘要:
A method and apparatus to trap, release and/or separate sample components in solution passing through a channel with or without packing material present by passing ion current through the channel driven by an electric field. A portion of the ion current includes cation and/or anion species generated from second solution flows separated from the sample solution flow path by semipermeable membranes. Cation and/or anion ion species generated in the second solution flow regions are transferred into the sample solution flow path through ion selective semipermeable membranes. Ion current moving along the sample solution flow path is controlled by varying the composition of the second solutions and/or changing the voltage between membrane sections for a given sample solution composition. The sample composition may also be varied separately or in parallel to enhance trapping, release and/or separation efficiency and range.
摘要:
Charged droplet spray is formed from a solution with all or a portion of the charged droplet spray current generated from reduction or oxidation (redox) reactions occurring on surfaces removed from the first or sample solution flow path. In one embodiment of the invention, two solution flow channels are separated by a semipermeable membrane. A first or sample solution flowing through the first solution flow channel exchanges cation or anion charged species through the semipermeable membrane with a second solution or gas flowing through the second flow channel. Charge exchange is driven by the electric field applied at the charged droplet sprayer sample solution outlet. Redox reactions occur at an electrode surface in contact with the second solution. The second solution or gas phase composition can be changed as a step function or as a gradient to run pH or conductivity scans in the first solution to optimize or modify Electrospray performance in Electrospray mass spectrometry applications. The first or sample solution forms a charged droplet spray by Electrospray or pneumatic nebulization in the presence of an electric field from the first solution flow channel exit. Evaporating charged liquid droplets form ions from species in solution that are transferred into vacuum and mass to charge analyzed. The second solution or composition can be modified to selectively change pH, conductivity and/or composition of the sample solution during Electrospray ionization to enhance or extend analytical performance for given ES/MS analytical applications. The invention increases the control and range of the Electrospray ionization process during ES/MS operation. Alternative embodiments of the invention provide for conducting redox reactions on conductive surfaces removed from the first or sample solution flow path but not separated by semipermeable membranes.
摘要:
Charged droplet spray is formed from a solution with all or a portion of the charged droplet spray current generated from reduction or oxidation (redox) reactions occurring on surfaces removed from the first or sample solution flow path. In one embodiment of the invention, two solution flow channels are separated by a semipermeable membrane. A first or sample solution flowing through the first solution flow channel exchanges cation or anion charged species through the semipermeable membrane with a second solution or gas flowing through the second flow channel. Charge exchange is driven by the electric field applied at the charged droplet sprayer sample solution outlet. Redox reactions occur at an electrode surface in contact with the second solution. The invention increases the control and range of the Electrospray ionization process during ES/MS operation. Alternative embodiments of the invention provide for conducting redox reactions on conductive surfaces removed from the first or sample solution flow path but not separated by semipermeable membranes.
摘要:
A method and apparatus to trap, release and/or separate sample components in solution passing through a channel with or without packing material present by passing ion current through the channel driven by an electric field. A portion of the ion current includes cation and/or anion species generated from second solution flows separated from the sample solution flow path by semipermeable membranes. Cation and/or anion ion species generated in the second solution flow regions are transferred into the sample solution flow path through ion selective semipermeable membranes. Ion current moving along the sample solution flow path is controlled by varying the composition of the second solutions and/or changing the voltage between membrane sections for a given sample solution composition. The sample composition may also be varied separately or in parallel to enhance trapping, release and/or separation efficiency and range.
摘要:
Electrospray ionization sources interfaced to mass spectrometers have become widely used tools in analytical applications. Processes occurring in Electrospray (ES) ionization generally include the addition or removal of a charged species such as H+ or other cation to effect ionization of a sample species. Electrospray includes ionization processes that occur in the liquid and gas phase and in both phases ionization processes require a source or sink for such charged species. Electrolyte species, that aid in oxidation or reduction reactions occurring in Electrospray ionization, are added to sample solutions in many analytical applications to increase the ion signal amplitude generated in Electrospray and detected by a mass spectrometer (MS) Electrolyte species that may be required to enhance an upstream sample preparation or separation process may be less compatible with the downstream ES processes and cause reduction in MS signal. New Electrolytes have been found that increase positive and negative polarity analyte ion signal measured in ESMS analysis when compared with analyte ESMS signal achieved using more conventional electrolytes. The new electrolyte species increase ES MS signal when added directly to a sample solution or when added to a second solution flow in an Electrospray membrane probe. It has also been found that running the ES membrane probe with specific Electrolytes in the second solution of the ES membrane probe have been found to enhance ESMS signal compared to using the same electrolytes directly in the sample solution being Electrosprayed. The new electrolytes can be added to a reagent ion source configured in a combination Atmospheric pressure ion source to improve ionization efficiency.
摘要:
Electrospray ionization sources interfaced to mass spectrometers have become widely used tools in analytical applications. Processes occurring in Electrospray (ES) ionization generally include the addition or removal of a charged species such as H+ or other cation to effect ionization of a sample species. Electrospray includes ionization processes that occur in the liquid and gas phase and in both phases ionization processes require a source or sink for such charged species. Electrolyte species, that aid in oxidation or reduction reactions occurring in Electrospray ionization, are added to sample solutions in many analytical applications to increase the ion signal amplitude generated in Electrospray and detected by a mass spectrometer (MS) Electrolyte species that may be required to enhance an upstream sample preparation or separation process may be less compatible with the downstream ES processes and cause reduction in MS signal New Electrolytes have been found that increase positive and negative polarity analyte ion signal measured in ESMS analysis when compared with analyte ESMS signal achieved using more conventional electrolytes The new electrolyte species increase ES MS signal when added directly to a sample solution or when added to a second solution flow in an Electrospray membrane probe. It has also been found that running the ES membrane probe with specific Electrolytes in the second solution of the ES membrane probe have been found to enhance ESMS signal compared to using the same electrolytes directly in the sample solution being Electrosprayed The new electrolytes can be added to a reagent ion source configured in a combination Atmospheric pressure ion source to improve ionization efficiency.
摘要:
The invention provides a method and apparatus for trapping, releasing and/or separating sample components in solution passing through a channel with or without packing material present by passing ion current through the channel driven by an electric field. A portion of the ion current comprises cation and/or anion species generated from second solution flows separated from the sample solution flow path by semipermeable membranes. Cation and/or Anion ion species generated in the second solution flow regions are transferred into the sample solution flow path through ion selective semipermeable membranes. Ion current moving along the sample solution flow path is controlled by varying the composition of the second solutions and/or changing the voltage between membrane sections for a given sample solution composition. The sample composition may also be varied separately or in parallel to enhance trapping, release and/or separation efficiency and range. The invention when interfaced to an Atmospheric Pressure Ion Source, that may include Electrospray Ionization, with mass spectrometric analysis enables independent control of the on-line sample separation process and the Atmospheric Pressure Ion Source or Electrospray ionization processes.
摘要:
The instant invention deals with species that may be required to enhance an upstream sample preparation or separation process may be less compatible with the downstream ES processes and cause reduction in MS signal. New electrolytes have been found that increase positive and negative polarity analyte ion signal measured in ESMS analysis when compared with analyte ESMS signal achieved using more conventional electrolytes. The new electrolyte species increase ES MS signal when added directly to a sample solution or when added to a second solution flow in an electrospray membrane probe, it has also been found that running the ES membrane probe with specific electrolytes in the second solution of the ES membrane probe have been found to enhance ESMS signal compared to using the same electrolytes directly in the sample solution being electrosprayed. The new electrolytes can be added to a reagent ion source configured in a combination atmospheric pressure ion source to improve ionization efficiency.
摘要:
The invention provides a method and apparatus for trapping, releasing and/or separating sample components in solution passing through a channel with or without packing material present by passing ion current through the channel driven by an electric field. A portion of the ion current comprises cation and/or anion species generated from second solution flows separated from the sample solution flow path by semipermeable membranes. Cation and/or Anion ion species generated in the second solution flow regions are transferred into the sample solution flow path through ion selective semipermeable membranes. Ion current moving along the sample solution flow path is controlled by varying the composition of the second solutions and/or changing the voltage between membrane sections for a given sample solution composition. The sample composition may also be varied separately or in parallel to enhance trapping, release and/or separation efficiency and range. The invention when interfaced to an Atmospheric Pressure Ion Source, that may include Electrospray Ionization, with mass spectrometric analysis enables independent control of the on-line sample separation process and the Atmospheric Pressure Ion Source or Electrospray ionization processes.
摘要:
Species that may be required to enhance an upstream sample preparation or separation process may be less compatible with the downstream electrospray (ES) processes and cause reduction in mass spectroscopy (MS) signal. New electrolytes have been found that increase positive and negative polarity analyte ion signal measured in ESMS analysis when compared with analyte ESMS signal achieved using more conventional electrolytes. The new electrolyte species increase ES MS signal when added directly to a sample solution or when added to a second solution flow in an electrospray membrane probe, it has also been found that running the ES membrane probe with specific electrolytes in the second solution of the ES membrane probe have been found to enhance ESMS signal compared to using the same electrolytes directly in the sample solution being electrosprayed. The new electrolytes can be added to a reagent ion source configured in a combination atmospheric pressure ion source to improve ionization efficiency.