Abstract:
A semiconductor light emitting device includes an LED and a recipient luminophoric medium that includes a first narrow-spectrum luminescent material that down-converts a first portion of the radiation emitted by the LED to radiation having a first peak wavelength in the green-yellow color range and a second narrow-spectrum luminescent material that down-converts a second portion of the radiation emitted by the LED to radiation having a second peak wavelength in an orange-red color range. The first and second luminescent materials and any additional narrow-spectrum luminescent materials that are included in the recipient luminophoric medium generate at least 80% of the light emitted by the recipient luminophoric medium. A CRI value of the combined light emitted by the semiconductor light emitting device is at least 60 and less than 80.
Abstract:
A light emitting device includes a light emitting diode chip (“LED”) that emits light having a dominant wavelength in the blue color range and a recipient luminophoric medium that is configured to down-convert at least some of the light emitted by the LED. The recipient luminophoric medium includes a green phosphor, a yellow phosphor, a first red phosphor having a first dominant wavelength and a second red phosphor having a second dominant wavelength that is different from the first dominant wavelength.
Abstract:
Methods are disclosed including applying a layer of binder material onto an LED structure. A luminescent solution including an optical material suspended in a solution is atomized using a flow of pressurized gas, and the atomized luminescent solution is sprayed onto the LED structure including the layer of binder material using the flow of pressurized gas.
Abstract:
A light emitting device includes a light emitting diode chip (“LED”) that emits light having a dominant wavelength in the blue color range and a recipient luminophoric medium that is configured to down-convert at least some of the light emitted by the LED. The recipient luminophoric medium includes a green phosphor, a yellow phosphor, a first red phosphor having a first dominant wavelength and a second red phosphor having a second dominant wavelength that is different from the first dominant wavelength.
Abstract:
Provided according to embodiments of the invention are method of coating a phosphor that include contacting the phosphor with a sol comprising at least one of silica, alumina, borate and a precursor thereof, to form a coating on the phosphor; and heating the phosphor. Also provided are phosphors that are coated with alumina, silica and/or borate, and light emitting devices that include such phosphors.
Abstract:
Methods are disclosed including applying a layer of binder material onto an LED structure. A luminescent solution including an optical material suspended in a solution is atomized using a flow of pressurized gas, and the atomized luminescent solution is sprayed onto the LED structure including the layer of binder material using the flow of pressurized gas.
Abstract:
Provided according to embodiments of the invention are method of coating a phosphor that include contacting the phosphor with a sol comprising at least one of silica, alumina, borate and a precursor thereof, to form a coating on the phosphor; and heating the phosphor. Also provided are phosphors that are coated with alumina, silica and/or borate, and light emitting devices that include such phosphors.