Abstract:
An LED light fixture includes a heat-sink, a circuit board thereon with a plurality of spaced LED light sources, and a one-piece optical member with a plurality of secondary lenses over corresponding LED light sources and having a lens flange surrounding the lenses and integral with each lens. The optical member includes a polymeric carrier portion surrounding the lenses, overlapping with and molded onto the lens flanges across such overlapping, and extending therefrom to a peripheral edge portion. The optical member has an outer surface infused with an ultraviolet inhibitor to increase long-term weathering performance. The infused outer surface includes an outer layer of each lens and extends to form an outer layer of the lens flanges and therebeyond to form an outer layer of the carrier portion. The invention also includes a method of manufacturing such infused optical member.
Abstract:
An LED light fixture includes a heat-sink, a circuit board thereon and having a plurality of spaced LED light sources, and a one-piece optical member with a plurality of secondary lenses over corresponding LED light sources, the one-piece optical member comprises (a) each of the lenses having at least one layer of a polymeric material which extends into a lens flange of such material that surrounds the lens and is spaced from the other lenses and (b) a polymeric carrier portion surrounding the lenses, overlapping and molded onto to the lens flanges across such overlapping, and extending to a peripheral edge. The polymeric materials may be different; e.g., the lens layer and lense flanges being an acrylic and the carrier being a polycarbonate. The innermost lens layer may be of an LSR material. The invention is also such one-piece optical member and a method of manufacturing such member.
Abstract:
A one-piece optical member with a plurality of secondary lenses over corresponding LED light sources, the one-piece optical member comprises (a) each with an outward lens flange surrounding a light-transmitting portion which is formed by a plurality of layers and has an asymmetric inner surface defining a pair of cavities with at least one of the plurality of layers at least partially extending between the pair of cavities, a portion of the inner-surface which defines one of the cavities is at least partially formed by another of the plurality of layers which is bonded to the at least one layer extending between the pair of cavities. The polymeric materials may be different; e.g., the innermost lens layer may be of an LSR material. The invention is also a method of manufacturing the one-piece optical member and an LED light fixture with the one-piece member over a plurality of LED light sources spaced on a circuit board.
Abstract:
A unitary optic member for directing light from a plurality of LED light sources on a board beneath the optic member which has a plurality of lens portions surrounded by and interconnected by a non-lens portion. The optic member being formed by a plurality of layers with layer-to-layer interface bonding between adjacent layers and comprising an asymmetric light-receiving inner-surface defining a pair of cavities, a portion of the inner surface which defines one of the cavities is at least partially formed by an innermost layer of the plurality of layers, at least a portion of another of the plurality of layers extending inwardly between the pair of cavities and being bonded to the innermost layer.
Abstract:
An injection-molding apparatus for article formation. The injection-molding apparatus includes a single mold base supporting at least one grouping of a plurality of shape-forming configuration sets. Each set includes at least one cavity and is shaped for forming one of first-formed, intermediate-formed and last-formed regions of the article in the cavities by a corresponding one of injection-molding shots. Each cavity retains each article region formed by the preceding injection-molding shot(s). The single mold base includes a movable part which moves internally within the single mold base with respect to a stationary part such that relative positions of the shape-forming configurations are advanced for each set to form a subsequent article region in the cavities. Each subsequent injection-molding shot may at least partially over-mold the article region formed in the preceding shot. Each subsequent shot may be prior to full cooling of the article region formed in the previous shot.
Abstract:
A unitary optic member for directing light from a plurality of LED light sources on a board beneath the optic member, the optic member having a plurality of lens portions surrounded by and interconnected by a non-lens portion and comprising: a first molded polymeric layer forming (a) the non-lens portion and (b) an outermost layer of each of the lens portions, the outermost layer of each lens portion forming a pocket-space at such lens portion; and for each lens portion, a second molded polymeric layer overmolded onto the first polymeric layer within the corresponding pocket-space. The invention includes an LED light fixture with such a unitary optic member. Another aspect of the invention is a multi-layer polymeric lens for directing light from an LED light source, the lens defining a lens optical footprint and at least one of the polymeric layers being less than coextensive with the lens optical footprint.
Abstract:
A lens for distribution of light from a light emitter. The lens has thick and thin wall portions between inner and outer lens surfaces. The thick wall portion(s) are at least twice as thick as the thin wall portion(s). At least one of the inner and outer surfaces has a texturing for diffusion of emitter light passing therethrough. The lens may include at least one interface between two materials with different indices of refraction. At least one surface of the interface may have a texturing for diffusion of emitter light passing therethrough. And, a method for manufacturing of the lens by forming a lens region with a textured surface portion by injecting the thermoplastic elastomer into an injection-molding cavity defined by a shape-forming configuration with a texturing in at least one area of the cavity. The shape-forming configuration is configured to shape a thermoplastic elastomer into such thickness that the set elastomer retains the texturing.
Abstract:
A lens for distribution of light from a light emitter having an emitter axis. The lens including an outer surface receiving light from the inner surface which defines an inner cavity and includes an axial inner-surface portion of a conical shape formed by a substantially cross-sectionally linear inner region extending outwardly from positions at the emitter axis toward an open end of the inner cavity. An LED light fixture comprising a mounting structure supporting a plurality of spaced LED light sources with a plurality of the lenses each in alignment with a corresponding one of the light sources.
Abstract:
An LED light fixture includes a heat-sink, a circuit board thereon and having a plurality of spaced LED light sources, and a one-piece optical member with a plurality of secondary lenses over corresponding LED light sources, the one-piece optical member comprises (a) each of the lenses having at least one layer of a polymeric material which extends into a lens flange of such material that surrounds the lens and is spaced from the other lenses and (b) a polymeric carrier portion surrounding the lenses, overlapping and molded onto to the lens flanges across such overlapping, and extending to a peripheral edge. The polymeric materials may be different; e.g., the lens layer and lense flanges being an acrylic and the carrier being a polycarbonate. The innermost lens layer may be of an LSR material. The invention is also such one-piece optical member and a method of manufacturing such member.
Abstract:
A lens for distribution of light from a light emitter having an emitter axis. The lens includes an inner surface defining an inner cavity and including a substantially cross-sectionally convex inner region along an open end of the inner cavity and a substantially cross-sectionally linear inner region joining the substantially cross-sectionally convex inner region and extending therefrom toward the emitter axis. The convex region is configured for refracting emitter light rays toward the emitter axis. The lens further includes an outer surface receiving the light from each of the inner regions. A lens flange surrounds the lens and has an outer flange surface extending radially outwardly from the lens outer surface at positions axially spaced from the light emitter. The convex inner region is configured to refract emitter light to the outer surface such that the outer flange surface is substantially free from receiving any emitter light.