Abstract:
The present invention provides a method and an apparatus for forming an antenna beam from an array antenna having a rear facing side, an aperture, and including a first and a second radiating element. The method comprises injecting a synchronization signal wirelessly from a common source at the rear facing side of the array antenna to provide an initial calibration of the array antenna that synchronizes phase of an output signal from the first and second radiating elements to the common source. The method further comprises compensating a change in phase of the synchronization signal at the first radiating element based on a spatial displacement to synchronize phase of a first portion of the output signal from the first radiating element to the phase of the synchronization signal at the second radiating element in response to the spatial displacement of the first radiating element after the initial calibration of the antenna array. A synchronization source may couple to the phased array antenna wirelessly, such as optically or using radio frequency based coupling. To synchronize a portion of an output signal from a plurality of radiating elements, a phase shift unit and/or a time delay unit at each radiating element may lock its phase to a synchronization signal from a common or a point source regardless of a location thereof relative to the synchronization source. In this way, a synchronization source may synchronize the phase of the phased array antenna even if one or more radiating elements may move from an original spatial location to any arbitrary position.
Abstract:
A reconfigurable antenna comprises an array of interconnected gas enclosures, each of the enclosures being controllable between at least a first state in which gas within the enclosure is substantially non-conducting and a second state in which the gas within the enclosure forms an electrically conductive plasma. At least one pair of adjacent enclosures in the array is arranged such that configuring the pair of enclosures in the second state results in an electrical connection, between a first electrode associated with one of the enclosures of the pair and a second electrode associated with the other enclosure of the pair, through electrically conductive plasma of at least one of the enclosures of the pair. The reconfigurable antenna in an illustrative embodiment is operable in a plurality of different modes of operation by altering, from mode to mode, which of the enclosures are configured in the first state and which of the enclosures are configured in the second state.
Abstract:
An apparatus is disclosed that substantially reduces or eliminates the resonance that occurs in vias that connect the layers of a printed circuit board by electrically coupling a first transmission line in a circuit board to a second transmission line in a circuit board by two electrical paths having substantially the same electrical length. The two electrical paths are created by connecting the first transmission line to a first via which is in turn connected to a second via having a second transmission line with a plurality of connecting electrical paths between the two vias. In one illustrative embodiment, electrical traces are used to connect the top of the first via to the top of the second via and the bottom of the first via to the bottom of the second via.
Abstract:
A light weight antenna system and corresponding lightweight transmission lines are disclosed that are characterized as having an extremely light weight relative to prior such systems and lines. An inflatable body having an inner surface connected to an outer surface with a plurality of support structures, such as connecting tubes. Antenna elements are disposed on the outer surface of the inflatable body to form, for example, a phased array antenna. Coaxial transmission lines are used to transmit signals to and from an antenna element and are, in one embodiment, created by disposing an inner conductor within the aforementioned connecting tubes. Such a transmission line may be utilized in a number of applications, such as to connect a base station to an antenna system of a wireless communications network. In another embodiment, quasi coaxial transmission lines are formed by disposing flexible membrane shields around a transmission elements.
Abstract:
A method and apparatus providing a tunable channelized patch antenna by selectively adjoining one or more radiating element extensions successively to a radiating element of the patch antenna, and adjusting fringe capacitance at active outer edges of the patch antenna.
Abstract:
An apparatus comprising a tuning device having at least one control electrode and a ground electrode located over a substrate and an electrically conductive fluid in contact with the control and ground electrodes. The tuning device also has at least one electrical transmission line electrically coupled to the fluid, the transmission line configured to transmit a signal. The fluid is configured to move when a voltage is applied between the ground electrode and the control electrode, the movement of the fluid changing a propagation characteristic of the signal.
Abstract:
An efficient, low-loss, low sidelobe, high dynamic range phased-array radar antenna system is disclosed that uses metamaterials, which are manmade composite materials having a negative index of refraction, to create a biconcave lens architecture (instead of the aforementioned biconvex lens) for focusing the microwaves transmitted by the antenna. Accordingly, the sidelobes of the antenna are reduced. Attenuation across microstrip transmission lines may be reduced by using low loss transmission lines that are suspended above a ground plane a predetermined distance in a way such they are not in contact with a solid substrate. By suspending the microstrip transmission lines in this manner, dielectric signal loss is reduced significantly, thus resulting in a less-attenuated signal at its destination.
Abstract:
An apparatus includes a 3D array of circuit elements and control lines for coupling a remote control device to the circuit elements in the array. Each circuit element is configured to transform from one circuit state to another circuit state in response to a change in a control signal received from one of the control lines. The 3D array includes a region that behaves as a metamaterial in a selected frequency when the circuit elements of the region are in one set of circuit states and as a normal refractive medium in the selected frequency when the circuit elements of the region are another set of circuit states.
Abstract:
An apparatus comprising a tuning device having at least one control electrode and a ground electrode located over a substrate and an electrically conductive fluid in contact with the control and ground electrodes. The tuning device also has at least one electrical transmission line electrically coupled to the fluid, the transmission line configured to transmit a signal. The fluid is configured to move when a voltage is applied between the ground electrode and the control electrode, the movement of the fluid changing a propagation characteristic of the signal.
Abstract:
The present invention includes method and apparatus for converting optical signals to MWOF signals for transmission to wireless data, audio and/or video terminals in the W-band. Advantageously, there is no need to maintain expensive and complex remote stations because a centralized station performs all the complex processing.