摘要:
An aftertreatment system comprises an aftertreatment component. An outlet sensor is positioned downstream of the aftertreatment component. A controller is communicatively coupled to the outlet sensor. The controller is configured to interpret an outlet signal from the outlet sensor. The outlet signal is indicative of a performance of the aftertreatment component. The controller determines if the aftertreatment component has deactivated. In response to determining that the aftertreatment component has deactivated, the controller provides a catalyst active material to at least a portion of the aftertreatment component. The catalyst active material coats at least the portion of the aftertreatment component so as to remanufacture the aftertreatment component.
摘要:
Systems and methods for an aftertreatment system configured for use with a dual-fuel engine system are described. The method comprises determining an operating mode of the dual-fuel engine. Upon determining that the dual-fuel engine is operating in a dual-fuel mode or a natural gas mode, the dual-fuel engine operates in a stoichiometric operating condition, and the exhaust is received into a three-way catalyst communicatively connected to a selective catalytic reduction catalyst. Upon determining that the dual-fuel engine is not operating in the dual-fuel mode or the natural gas mode, the engine operates in a lean operating condition.
摘要:
An oxidation catalyst may include hydrocarbon storage material. One implementation relates to a diesel oxidation catalyst that includes a catalyst having a front zone and a rear zone and a gradient of hydrocarbon storage material on the catalyst extending from the front zone to the rear zone. The gradient of hydrocarbon storage material, may comprise a linear gradient, a step gradient, a parabolic gradient, a logarithmic gradient, or other forms thereof.
摘要:
An aftertreatment system comprises an aftertreatment component. An outlet sensor is positioned downstream of the aftertreatment component. A controller is communicatively coupled to the outlet sensor. The controller is configured to interpret an outlet signal from the outlet sensor. The outlet signal is indicative of a performance of the aftertreatment component. The controller determines if the aftertreatment component has deactivated. In response to determining that the aftertreatment component has deactivated, the controller provides a catalyst active material to at least a portion of the aftertreatment component. The catalyst active material coats at least the portion of the aftertreatment component so as to remanufacture the aftertreatment component.
摘要:
A timing-based method for regenerating a DOC included in an aftertreatment system fluidly coupled to a dual-fuel engine comprises performing at least one of the following: a temperature of the DOC is varied while flowing a mixed exhaust gas, which comprises a mixture of a diesel-only exhaust gas and a natural gas exhaust gas, generated by the dual-fuel engine through the DOC; alternately the method includes flowing (a) the mixed exhaust gas generated by the dual-fuel engine and (b) a diesel-only exhaust gas generated by the dual-fuel engine through the DOC.
摘要:
An aftertreatment system comprises a SCR system including a catalyst formulated to decompose constituents of an exhaust gas passing therethrough. A filter is positioned upstream of the SCR system. The filter comprises a sulfur suppressing compound formulated to reduce an amount of SOx gases included in the exhaust gas flowing through the aftertreatment system. In particular embodiments, the filter comprises a filter housing and a filter element positioned within the filter housing. The filter element comprises the sulfur suppressing compound.
摘要:
Catalyst diagnostic limit parts and methods for making catalyst diagnostic limit parts are disclosed. An exemplary catalyst diagnostic limit part includes a substrate and a washcoat coating the substrate. The washcoat includes an active catalyst and an inactive catalyst at a predetermined ratio of active catalyst to inactive catalyst so as to control the performance of the catalyst diagnostic limit part.
摘要:
An aftertreatment system includes a filtration and reduction unit. The filtration and reduction unit comprises a housing defining an internal volume. A filter is disposed in the internal volume and is configured to substantially remove particulates from the exhaust gas. A selective catalytic reduction system is disposed in the internal volume downstream of the filter and is configured to selectively reduce a portion of the exhaust gas. A first catalyst is formulated to oxidize at least a portion of the exhaust gas. An intake pipe is disposed upstream of the filtration and reduction unit and configured to communicate the exhaust gas o the filtration and reduction unit. The first catalyst is disposed in the intake pipe. An exhaust pipe is disposed downstream of the filtration and reduction unit.