Abstract:
A filter medium for an air filter includes a pre-collection member, a first porous film, and a second porous film arranged in order from the side that is upstream of the air current. Each of the first porous film and the second porous film has a pressure loss of 30 Pa or more and 90 Pa or less when air is passed through each porous film at a flow rate of 5.3 cm/s, and has a collection efficiency of 95% or more and 99.9% or less for NaCl particles having a particle diameter of 0.3 μm when air containing the NaCl particles is passed through each of the porous films at a flow rate of 5.3 cm/s. The pre-collection member has a pressure loss of 5 Pa or more and less than 55 Pa when air is passed through the pre-collection member at a flow rate of 5.3 cm/s, has a collection efficiency of 15% or more and less than 85% for NaCl particles having a particle diameter of 0.3 μm when air containing the NaCl particles is passed through the pre-collection member at a flow rate of 5.3 cm/s, and has a thickness of more than 0.4 mm.
Abstract:
The present invention aims to provide a sheet having high conductivity in the thickness direction and excellent breathability, water repellency, corrosion resistance, and flexibility so as to be suitably used for an electrode of fuel cells and the like. The present invention also aims to provide an electrode and a fuel cell. The present invention provides a sheet containing polytetrafluoroethylene, carbon black, and graphite, the polytetrafluoroethylene having a standard specific gravity of 2.14 to 2.28, a total amount of the carbon black and the graphite being more than 35% by mass of a total amount of the polytetrafluoroethylene, the carbon black, and the graphite.
Abstract:
A composition, a mixed power and a material for molding have polytetrafluoroethylene as a main component. Each includes polytetrafluoroethylene that can be fibrillated, a non-hot melt processable component that is not fibrillated, and a hot melt processable component with a melting point of lower than 320° C. that is not fibrillated. The hot melt processable component is contained at equal to or more than 0.1% by weight but less than 20% by weight of a total weight. A filtering medium for an air filter includes a porous membrane made of these components, and an air permeable support. The porous membrane is manufactured, by mixing these components, extruding the mixture, rolling and drawing.
Abstract:
A filter medium includes first and second porous films mainly containing fluororesin, and a pre-collection member upstream of the first film. The pre-collection member has a pressure drop when air is passed through at a flow rate of 5.3 cm/s of between 15 Pa and 55 Pa, a collection efficiency of NaCl particles having a particle diameter of 0.3 μm when air containing the particles is passed through at a flow rate of 5.3 cm/s of between 25% and 80%, a thickness of 0.4 mm or less, and a PF value between 7 and 15. A ratio of the PF value of the pre-collection member to the PF value when the first and second films are overlapped, is between 0.20 and 0.45. The filter medium can be in a filter pack or filter unit, and produced by integrating the films and the pre-collection member using heat lamination.
Abstract:
A filtering medium includes first and second porous membranes mainly composed of fluororesin, and a plurality of air permeable supports to support the first and second membranes. The second membrane is disposed downstream of the first membrane. When air containing polyalphaolefin particles with a count median diameter of 0.25 μm is continuously passed through at a flow rate of 5.3 cm/sec and pressure loss is increased by 250 Pa, the first membrane has a dust retention amount larger than the second membrane. The filtering medium has a pressure loss of less than 200 Pa when air is passed through at a flow rate of 5.3 cm/sec. A collecting efficiency of NaCl particles with a particle diameter of 0.3 μm is 99.97% or more when air containing the NaCl particles is passed through at a flow rate of 5.3 cm/sec. The dust retention amount is 25 g/m2 or more.
Abstract:
The present invention provides a porous body having high strength, a small pore size, and excellent homogeneity. The porous body of the present invention includes polytetrafluoroethylene and has a microstructure that includes nodes and fibrils. The microstructure further includes, in addition to the nodes and the fibrils, fused points where a fibril that links two nodes and another fibril that links another two nodes are fused with each other.
Abstract:
A composition, a mixed powder and a material for molding have polytetrafluoroethylene as a main component. Each includes polytetrafluoroethylene that can be fibrillated, a non-hot melt processable component that is not fibrillated, and a hot melt processable component with a melting point of lower than 320° C. that is not fibrillated. The hot melt processable component is contained at equal to or more than 0.1% by weight but less than 20% by weight of a total weight. A filtering medium for an air filter includes a porous membrane made of these components, and an air permeable support. The porous membrane is manufactured, by mixing these components, extruding the mixture, rolling and drawing.
Abstract:
A mixed powder and a material for molding have polytetrafluoroethylene as a main component. Each includes polytetrafluoroethylene that can be fibrillated, a non-hot melt processable component that is not fibrillated, and a hot melt processable component with a melting point of lower than 320° C. that is not fibrillated. The non-hot melt processable component that is not fibrillated is contained in a range of 20 to 40% by weight of the total weight. The hot melt processable component is contained at equal to or more than 0.1% by weight but less than 20% by weight of the total weight. A drawn porous body includes a plurality of fibrils, and a plurality of knotted portions that are connected to each other by the fibrils.
Abstract:
A filter medium includes first and second porous films mainly containing fluororesin, and a pre-collection member upstream of the first film. The second film is downstream of the first film. The pre-collection member has a pressure drop when air is passed through at a flow rate of 5.3 cm/s of between 15 Pa and 55 Pa, a collection efficiency of NaCl particles having a particle diameter of 0.3 μm when air containing the particles is passed hrough at a flow rate of 5.3 cm/s of between 25% and 80%, a thickness of 0.4 mm or less, and a PF value between 7 and 15. The PF value={−log((100−collection efficiency (%))/100)}/(pressure drop (Pa)/1000). A ratio of the PF value of the pre-collection member to the PF value when the first and second films are overlapped, is between 0.20 and 0.45. The filter medium can be used in a filter pack or filter unit, and may be produced by integrating the first and second films and the pre-collection member using heat lamination.