Abstract:
A piezoelectric resonator device according to one or more embodiments may include at least a core section. The core section includes: a three-ply structured crystal resonator in which a vibrating part is hermetically sealed; and a heater IC as a heating element. At least whole of a second main surface of a second sealing member of the crystal resonator is thermally coupled to the heater IC.
Abstract:
An OCXO according to one or more embodiments may include a core section hermetically encapsulated in a heat insulation package. The core section includes: an oscillation IC; a crystal resonator; and a heater IC. The core section is supported by the package via a core substrate. The OCXO further includes a capacitor as an electronic component for adjustment, which is attached to the package by soldering. The core section is vacuum-sealed in a sealed space of the package, while the capacitor is disposed in a space other than the sealed space.
Abstract:
A piezoelectric resonator device having a sandwich structure is provided, which is stably bonded to an external element. In the piezoelectric resonator device 1, at least a vibrating part 21 of a piezoelectric substrate 2 is sealed by a first sealing member 3 and a second sealing member 4. The piezoelectric substrate 2 includes: the vibrating part 21; and an external frame part 23 that is thicker than the vibrating part 21 and that surrounds the outer periphery of the vibrating part 21. External electrodes 31 to be connected to an external element 5 are provided on at least one of the first sealing member 3 and the second sealing member 4. The external element 5 is connected to the external electrodes 31 at least on the external frame part 23 of the piezoelectric substrate 2.
Abstract:
An AT-cut crystal resonator plate (2) includes a first main surface (2a) on which a first excitation electrode (211) is formed and a second main surface (2b) on which a second excitation electrode (212) is formed. The AT-cut crystal resonator plate (2) further includes: a substantially rectangular-shaped vibrating part (21) that is piezoelectrically vibrated when a voltage is applied to the first excitation electrode (211) and the second excitation electrode (212); a holding part (22) protruding from a corner part (21a) of the vibrating part (21) in a Z′ axis direction of the AT-cut crystal; and an external frame part (23) configured to surround an external circumference of the vibrating part (21) and to hold the holding part (22).
Abstract:
An oven-controlled crystal oscillator according to one or more embodiments includes a core section having at least an oscillation IC, a crystal resonator, and a heater IC. The core section is hermetically encapsulated in a heat-insulating package. The core section is supported by the package via a core substrate. The core substrate is connected to the package outside a region where the core section is provided in plan view.
Abstract:
In a crystal oscillator, a crystal resonator plate is bonded to, via laminated bonding patterns, a first sealing member covering a first excitation electrode of the crystal resonator plate; and a second sealing member covering a second excitation electrode of the crystal resonator plate. An internal space is formed, which hermetically seals a vibrating part including the first and second excitation electrodes of the crystal resonator plate. The laminated bonding patterns include a laminated sealing pattern annularly formed to surround the vibrating part in plan view so as to hermetically seal the internal space, and a laminated conductive pattern establishing conduction between wiring and electrodes. The laminated conductive pattern is disposed within a closed space surrounded by the laminated sealing pattern. To the laminated sealing pattern, GND potential is applied when the crystal oscillator operates.
Abstract:
A crystal oscillator (101) includes: a piezoelectric resonator plate (2) on which a first excitation electrode and a second excitation electrode are formed; a first sealing member (3) covering the first excitation electrode of the piezoelectric resonator plate (2); a second sealing member (4) covering the second excitation electrode of the piezoelectric resonator plate (2); and an internal space (13) formed by bonding the first sealing member (3) to the piezoelectric resonator plate (2) and by bonding the second sealing member (4) to the piezoelectric resonator plate (2), so as to hermetically seal a vibrating part including the first excitation electrode and the second excitation electrode of the piezoelectric resonator plate (2). An electrode pattern (371) including a mounting pad for wire bonding is formed on an outer surface (first main surface (311)) of the first sealing member (3).
Abstract:
An OCXO according to one or more embodiments may include a core section hermetically encapsulated inside a heat insulation package. The core section includes: an oscillation IC; a crystal resonator; and a heater IC, and furthermore is supported by the package via a core substrate. The core substrate is mechanically connected to the package by a non-conductive adhesive. The core section and the package are electrically connected to each other by wire bonding using wires.
Abstract:
In a crystal oscillator, a crystal resonator and an IC chip are hermetically sealed in a package. The crystal resonator includes: a crystal resonator plate including a first excitation electrode formed on a first main surface, and a second excitation electrode, which makes a pair with the first excitation electrode, formed on a second main surface; a first sealing member covering the first excitation electrode of the crystal resonator plate; and a second sealing member covering the second excitation electrode of the crystal resonator plate. A vibrating part including the first excitation electrode and the second excitation electrode of the crystal resonator plate is hermetically sealed by bonding the first sealing member to the crystal resonator plate, and the second sealing member to the crystal resonator plate.
Abstract:
A crystal resonator includes: a crystal resonator plate; a first sealing member that covers a first excitation electrode of the crystal resonator plate; and a second sealing member that covers a second excitation electrode of the crystal resonator plate and includes a first external electrode terminal and a second external electrode terminal to be bonded to a circuit board using a flowable conductive bonding material. The second sealing member includes a second through hole and a third through hole that pass through between a first main surface and a second main surface on which the first external electrode terminal and the second external electrode terminal are formed. The second through hole and the third through hole include: respective through electrodes for conduction between electrodes formed on the first main surface and the second main surface; and respective through parts.