Abstract:
An oil pressure control device controls a supply pressure of oil supplied to an oil pressure chamber of a friction element having a first engagement board and a second engagement board engaged with or disengaged from each other between a non-engagement state and a non-sliding engagement state via a sliding engagement state. The oil pressure control device includes: an electromagnetic valve that controls the supply pressure using a spool which reciprocates according to an energizing amount; and a control part that defines a first oscillatory wave part in which the energizing amount is controlled by making a first waveform with a first frequency to superimpose on a second waveform with a second frequency higher than the first frequency during a first period while the sliding engagement state and an instruction value of the supply pressure are kept constant.
Abstract:
A normal oil passage that supplies hydraulic pressure to a friction engagement element through a hydraulic control valve, and a bypass oil passage that supplies hydraulic pressure to the friction engagement element while bypassing the hydraulic control valve, are provided. By switching an operative position of a manual valve, a hydraulic pressure supply route to the friction engagement element is switched between the normal oil passage and the bypass oil passage. By switching to the bypass oil passage, the hydraulic pressure supplied to the friction engagement element is not affected by operation of the hydraulic control valve, and a cleaning control may be performed to cause the hydraulic control valve to perform a cleaning operation. Accordingly, even if an operation amount of the cleaning control for the hydraulic control valve is increased, malfunctions by the friction engagement element will not occur.
Abstract:
A variable capacity type oil pump, which is driven by an engine, supplies hydraulic pressure to a hydraulic control circuit of an automatic transmission. A range switch mechanism, which includes a motor as a motive power source, switches a shift range of the automatic transmission. Further, a switch operation mechanism, which switches a discharge amount of the oil pump, is driven by the motor of the range switch mechanism. In this case, an operative position of the switch operation mechanism is switched by the motor according to an input rotation speed of the oil pump, thereby switching the discharge amount of the oil pump. Accordingly, the motor of the range switch mechanism is used to drive the switch operation mechanism to switch the discharge amount of the oil pump, and thus a motive power source dedicated to changing the discharge amount of the oil pump is not needed.
Abstract:
A control device for controlling an automatic transmission determines whether a fluid pressure of the operation fluid acting on a friction engagement element that is switched from a released-state to an engaged-state is in a fully-decreased state. If determined that the fluid pressure is not in a fully-decreased state, control of a manual valve is delayed. In such manner, the hydraulic circuit is switched by the manual valve after the full decrease of the fluid pressure of the operation fluid acting on the just-engaged friction engagement element. As a result, an abrupt rise of the fluid pressure is prevented and a shock in the automatic transmission is reduced.
Abstract:
A current control device sets a target current value of a solenoid, and sets a duty ratio of a PWM signal outputted to a drive circuit of a solenoid based on the target current value. The target current value is a value that periodically varies in a dither period longer than a PWM period of the PWM signal. A setting period of the target current value and a setting period of the duty ratio are shorter than the dither period. As compared with a configuration where the duty ratio is set in the dither period, a time period from a time a basic current value is changed to a time the duty ratio is renewed is shortened. A operation responsiveness of a movable core of the solenoid improves.
Abstract:
An electronic control unit that is used in an automatic transmission to regulate oil circulation. The electronic control unit includes a switcher that supplies an electric current to a linear solenoid, a current detector that detects an actual electric current value of the solenoid, a target current calculator that calculates a target electric current value, a feedback controller that sets a duty ratio to match the actual electric current value to the target electric current value and to generate a Pulse Width Modulation (PWM) signal having the set duty ratio, and a corrector that determines whether a coupled oscillation has occurred by obtaining oil pressure information of the hydraulic circuit and to correct the PWM signal when determining that the vibration has occurred.
Abstract:
A load drive controlling device includes a dulling controller, a dulling adjuster, and a Proportional Integral (PI) controller. The dulling adjuster sets a first electric current value for a dulling adjustment operation according to a change trend of a target electric current value in an inductive load. The dulling adjuster performs the dulling adjustment operation on the first electric current and limits a dulled value based on a guard value. The PI controller performs a PI control based on a deviation between the dulled value and an actual value of the electric current. The dulling controller sets the first electric current value and the guard value according to a change trend of the target electric current value. In such a configuration, the load drive controlling device improves an electric current response while preventing an over-accumulation of an integration value.
Abstract:
A load drive control device is provided, which includes a pulse generator for generating pulse signals with a duty ratio to drive an inductive load, a feedback setting section for setting the duty ratio for feedback, a detection setting section for setting the duty ratio for detection of a natural vibration frequency of the inductive load, a natural vibration frequency setting section for setting the natural vibration frequency of the inductive load based on an actual current value detected at setting the duty ratio for detection, and a selection section for selecting the feedback setting section as a duty ratio setting section at a normal time and for selecting the detection setting section as the duty ratio setting section when a condition for detecting the natural vibration frequency is satisfied.
Abstract:
A shift range switcher includes a motor for switching a shift range and a controller for energizing the motor. The controller estimates temperatures of the motor and controller. The controller adds to the estimated controller temperature a value corresponding to heat generation in the controller due to energization of the motor. The controller subtracts from the estimated controller temperature a value corresponding to heat release from the controller due to de-energization of the motor. The controller adds to the estimated motor temperature a value corresponding to heat generation in the motor due to the energization. The controller subtracts from the estimated motor temperature a value corresponding to heat release from the motor due to the de-energization. The controller prohibits or restricts operations of the controller and the motor when at least one of the controller and motor estimated temperatures reaches an allowable temperature limit.
Abstract:
A current control device brings, after a target current has been changed to an upper side, a solenoid into a full-on state at a first timing that arrives in a predetermined control transition cycle shorter than an on-off cycle, determines whether an excitation current has become equal to or larger than a full-on threshold larger than the target current, brings the solenoid into a full-off state at a first timing that arrives in a predetermined energization switching cycle shorter than the on-off cycle after the excitation current has become equal to or larger than the full-on threshold, determines whether the excitation current has become equal to or smaller than a full-off threshold smaller than the target current, and causes a transition to a steady control at a first timing that arrives in the control transition cycle after the excitation current has become equal to or smaller than the full-off threshold.