Abstract:
A semiconductor device includes a semiconductor chip having an electrode portion and a joining member electrically connected to the electrode portion to allow an electric current to flow in the semiconductor chip through the joining member. The joining member contains a protective material that has a positive temperature coefficient of resistivity, and the positive temperature coefficient of resistivity has a larger value in a temperature range higher than a threshold temperature than in a temperature range lower than the threshold temperature, the threshold temperature being a predetermined temperature lower than a breakdown temperature of the semiconductor chip. The electrode portion of the semiconductor chip may contain the protective material.
Abstract:
In a manufacturing method of a silicon carbide semiconductor device, a semiconductor substrate made of single crystal silicon carbide is prepared. At a portion of the semiconductor substrate where a first electrode is to be formed, a metal thin film made of electrode material including an impurity is formed. After the metal thin film is formed, the first electrode including a metal reaction layer in which the impurity is introduced is formed by irradiating the metal thin film with a laser light.
Abstract:
In a semiconductor device, a first semiconductor chip and a second semiconductor chip are disposed between a first support member and a second support member. A first underlayer bonding material is disposed between the first semiconductor chip and the first support member. A second underlayer bonding material is disposed between the second semiconductor chip and the first support member. A first upper layer bonding material is disposed between the first semiconductor chip and the second support member. A second upper layer bonding material is disposed between the second semiconductor chip and the second support member.
Abstract:
A semiconductor device includes: a heat spreader; a semiconductor element on the heat spreader; and a connection member arranged between the heat spreader and the semiconductor element. The heat spreader is arranged in an order of the first heat spreader, the second heat spreader and the first heat spreader in one direction of a plane of the heat spreader. Each of the first and second heat spreaders includes multiple anisotropic heat conductive planes having a high heat conductivity. The anisotropic heat conductive plane of the first heat spreader is in parallel to both a stacking direction and a first direction perpendicular to the stacking direction. The anisotropic heat conductive plane of the second heat spreader is in parallel to both the stacking direction and a second direction perpendicular to the stacking direction. A projection region of the semiconductor element overlaps with the second heat spreader.
Abstract:
A silicon carbide semiconductor device includes a silicon carbide semiconductor substrate having a front surface and a rear surface, and an ohmic electrode in ohmic contact with silicon carbide of at least one of the front surface or the rear surface of the silicon carbide semiconductor substrate. The ohmic electrode is made of Ni containing 0.1 wt % or more and 15 wt % or less of P as an impurity. The ohmic electrode contains Ni silicide including NiSi. The ohmic electrode further contains Ni5P2 in the Ni silicide. A method for manufacturing the silicon carbide semiconductor device includes forming a metal thin film on the silicon carbide that is to be in ohmic contact with the ohmic electrode, and forming the ohmic electrode by laser annealing that includes irradiating the metal thin film with laser light and reacting the Ni with Si in the silicon carbide to generate Ni silicide.
Abstract:
A semiconductor device includes: a mounting member having an electrode; a conductive member facing the electrode; and a bonding member electrically and mechanically connecting the electrode and the conductive member. The bonding member is made of a sintered body in which an additive particle including a metal atom having aggregation energy higher than a silver atom is added to an silver particle.
Abstract:
A silicon carbide semiconductor device includes: a semiconductor substrate that has a front surface and a rear surface, and is made of silicon carbide; and an ohmic electrode that is ohmically connected to the front surface or the rear surface of the semiconductor substrate. The ohmic electrode includes a metal silicide part and a metal carbide part. The metal silicide part surrounds a periphery of the metal carbide part that has a block shape. The metal silicide part is disposed between the semiconductor substrate and the metal carbide part.
Abstract:
In a manufacturing method of a silicon carbide semiconductor device, a semiconductor substrate made of single crystal silicon carbide is prepared. At a portion of the semiconductor substrate where a first electrode is to be formed, a metal thin film made of electrode material including an impurity is formed. After the metal thin film is formed, the first electrode including a metal reaction layer in which the impurity is introduced is formed by irradiating the metal thin film with a laser light.
Abstract:
A semiconductor device includes: a semiconductor element; a support as a metallic member that includes a metallized layer having a first component as an iron group element and a second component as a periodic table group five or group six transition metal element other than chromium provided at an outermost surface of the support, and is arranged such that the outermost surface faces the semiconductor element; a joint material that is arranged between the outermost surface of the support and the semiconductor element, and is joined with the outermost surface to fix the semiconductor element to the support; and a molding resin that is arranged to cover a joint body having the support, the joint material and the semiconductor element.
Abstract:
A silicon carbide semiconductor device includes: a semiconductor substrate made of silicon carbide single crystal and having a principal surface and a backside; and an ohmic electrode contacting one of the principal surface and the backside of the semiconductor substrate in an ohmic manner. A boundary between the ohmic electrode and the one of the principal surface and the backside of the semiconductor substrate is terminated with an element, which has a Pauling electronegativity larger than silicon and a binding energy with silicon larger than a binding energy of Si—H.