Abstract:
A vehicular data conversion apparatus includes: an acquisition portion that acquires vehicle data from a vehicle; a first storage portion that stores a data processing method for outputting the vehicle data to an outside of the vehicle in accordance with a classification level corresponding to the vehicle data acquired by the acquisition portion; and an output portion that outputs the vehicle data that has been converted in accordance with the data processing method stored in the first storage portion.
Abstract:
A communication system includes a plurality of nodes performing communication via a common communication channel based on a communication protocol and including a first node or a second node. The first node transmits, to the communication channel, a wake-up frame as the communication frame for enabling the second node to transition from a sleep state to a normal state, determines whether or not the second node transitions to the normal state due to the wake-up frame, and generates an abnormal waveform pattern in the communication channel when determined that the second node does not transition to the normal state. The second node stores the identification information allocated to the second node, and enables the second node to transition from the sleep state to the normal state under on condition that the identification information included in the wake-up frame received from the communication channel is identical to the stored identification information.
Abstract:
An on-board network system is presented. The on-board network system sends a sleep-entered message to a communication bus. The sleep-entered message is sent under a condition that a sleep condition is satisfied on a basis that a network management (NM) message is ceased during state transition process in which node's state transfers from a normal state to a power-saving state. A monitoring ECU corresponding to a master performs an abnormality detection process. In the abnormality detection process, the monitoring ECU detects an abnormality state of the state transition process based on whether or not the sleep-entered message is sent from any one of nodes, thereby it is possible to detect the abnormality state not only during each node is a normal state but also during a bus-sleep state.
Abstract:
A vehicle-mounted control device, which communicates with a vehicle-mounted node via a common bus and follows a communication protocol that the lower the priority of a data frame output from the vehicle-mounted node, the longer a waiting time, includes: an arbitration device that suspends transmission of the transmission target frame to the bus when the priority of a transmission target frame is lower than an output data frame from the vehicle-mounted node, and continues transmission of the transmission target frame to the bus when the priority of the transmission target frame is higher than the output data frame; and a change device that changes the priority of the transmission target frame to be the highest of all data frames when the transmission of the transmission target frame is suspended for a prescribed time or longer as a result of arbitration control by the arbitration device.
Abstract:
An on-board network system is presented. The on-board network system sends a sleep-entered message to a communication bus. The sleep-entered message is sent under a condition that a sleep condition is satisfied on a basis that a network management (NM) message is ceased during state transition process in which node's state transfers from a normal state to a power-saving state. A monitoring ECU corresponding to a master performs an abnormality detection process. In the abnormality detection process, the monitoring ECU detects an abnormality state of the state transition process based on whether or not the sleep-entered message is sent from any one of nodes, thereby it is possible to detect the abnormality state not only during each node is a normal state but also during a bus-sleep state.
Abstract:
A communication system includes a plurality of nodes performing communication via a common communication channel based on a communication protocol and including a first node or a second node. The first node transmits, to the communication channel, a wake-up frame as the communication frame for enabling the second node to transition from a sleep state to a normal state, determines whether or not the second node transitions to the normal state due to the wake-up frame, and generates an abnormal waveform pattern in the communication channel when determined that the second node does not transition to the normal state. The second node stores the identification information allocated to the second node, and enables the second node to transition from the sleep state to the normal state under on condition that the identification information included in the wake-up frame received from the communication channel is identical to the stored identification information.