Abstract:
A self-localization estimation unit of a self-localization estimation device determines, based on mutual relationships between the in-lane position and the absolute position including the error, whether there is lane-relevant candidate information, the lane-relevant candidate information representing that one or more in-vehicle positions are each estimated to be in which of lanes identified by the lane information; and estimates, based on a result of the determination of whether there is lane-relevant candidate information, a localization of the own vehicle corresponding to the map information.
Abstract:
A driving support apparatus derives position prediction data when T=Tn, which is when a predicted time Tn has elapsed from the present time, based on acquired map data, position data and speed data. Direction prediction data indicating a traveling direction of a vehicle 1 at the time T=Tn is derived based on acquired map data and derived position prediction data. A yaw angle which is an angle formed by a traveling direction D0 represented by e direction data and the traveling direction Dn represented by direction prediction data is derived. A target speed Vn of the vehicle is then derived.
Abstract:
A vehicular data conversion apparatus includes: an acquisition portion that acquires vehicle data from a vehicle; a first storage portion that stores a data processing method for outputting the vehicle data to an outside of the vehicle in accordance with a classification level corresponding to the vehicle data acquired by the acquisition portion; and an output portion that outputs the vehicle data that has been converted in accordance with the data processing method stored in the first storage portion.
Abstract:
A driving support apparatus derives position prediction data when T=Tn, which is when a predicted time Tn has elapsed from the present time, based on acquired map data, position data and speed data. Direction prediction data indicating a traveling direction of a vehicle 1 at the time T=Tn is derived based on acquired map data and derived position prediction data. A yaw angle which is an angle formed by a traveling direction D0 represented by e direction data and the traveling direction Dn represented by direction prediction data is derived. A target speed Vn of the vehicle is then derived.
Abstract:
A disclosed wireless communication device performing transmission and reception in a time-division manner includes an antenna, a transmission unit, a reception unit, a transmission/reception switchover unit, a first path switchover unit, a directional coupler, a second path switchover unit, a first fault diagnosis unit, and a second fault diagnosis unit. The second fault diagnosis unit causes the second path switchover unit to form a reflection signal input path; causes a second transmission signal level-adjusted for fault diagnosis to be outputted from the transmission unit; acquires a signal level of a reflection signal from the antenna inputted from the directional coupler into the reception unit; and determines whether or not a transmission radio wave is normally emitted from the antenna based on the signal level of the reflection signal.
Abstract:
A method includes the step of receiving traffic signal display information from a traffic control unit controlling a display of a traffic signal located near an intersection when a vehicle is driving toward the intersection. The traffic signal display information includes a current display state of the traffic signal and information indicating a remaining time for which the current display state of the traffic signal will continues. The method further includes the step of acquiring traffic signal recognition information when the vehicle is driving toward the intersection. The traffic signal recognition information is recognized by a traffic signal detector mounted on the vehicle and indicating a current display of the traffic signal. The method further includes the step of controlling driving of the vehicle when the vehicle enters the intersection based on the traffic signal display information and the traffic signal recognition information.
Abstract:
A disclosed wireless communication device includes an antenna for communication, a transmission unit, a reception unit, a transmission/reception switchover unit, a communication control unit, a diagnosis start determination unit, a loopback path forming unit, a reception level determination unit, a reception duration determination unit, and a fault assertion unit. When a loopback path, which inputs a transmission signal outputted from the transmission unit into the reception unit, is formed by the loopback path forming unit, the reception level determination unit detects a signal level of a reception signal received by the reception unit, and determines whether or not the signal level is normal. The reception duration determination unit measures a reception duration of the reception signal in the reception unit, and determines whether or not the reception duration has exceeded a threshold value for abnormality determination.
Abstract:
A self-localization estimation device includes: a map-information acquisition unit that acquires map information including lane information for specifying lanes in which vehicles are enabled to travel; a position calculation unit that calculates an own-vehicle absolute position being an absolute position of an own vehicle in response to navigation signals received from a plurality of navigation satellites, the position calculation unit including a self-location measurement unit, a vehicle-momentum measurement unit, and dead reckoning unit; and a position estimation unit that estimates, based on the map information and the own-vehicle absolute position, a corrected own-vehicle position being a corrected position of the own vehicle. The position estimation unit estimates the corrected own-vehicle position by superimposing a reliability of the map information and a reliability of the own-vehicle absolute position on each other.
Abstract:
In an apparatus for correcting a location of a vehicle, a satellite positioning unit mounted in the vehicle measures the location of the vehicle using navigation satellites. A locational trajectory generating unit generates a locational trajectory of the vehicle based on the location of the vehicle measured by the satellite positioning unit. A location correcting unit corrects the location of the vehicle based on the locational trajectory and map information stored in a map information storage. The location correcting unit, for each of the vehicle locations included in the locational trajectory, determines in which one of the lanes of the road the vehicle was traveling as the vehicle location was measured, and geometrically compares at least one traveled lane of the road acquired from the determination and the locational trajectory, and based on the comparison, calculates a locational correction amount of the location of the vehicle.
Abstract:
In an apparatus for correcting a location of a vehicle, a satellite positioning unit mounted in the vehicle measures the location of the vehicle using navigation satellites. A locational trajectory generating unit generates a locational trajectory of the vehicle based on the location of the vehicle measured by the satellite positioning unit. A location correcting unit corrects the location of the vehicle based on the locational trajectory and map information stored in a map information storage. The location correcting unit, for each of the vehicle locations included in the locational trajectory, determines in which one of the lanes of the road the vehicle was traveling as the vehicle location was measured, and geometrically compares at least one traveled lane of the road acquired from the determination and the locational trajectory, and based on the comparison, calculates a locational correction amount of the location of the vehicle.