Abstract:
Provided are an extract, which is a fractionated component 1 of a water extract of a plant powder, wherein the fractionated component 1 is a fractionated component having a fractionation molecular weight of 12,000 or greater, wherein an ethanol-undissolved component of the fractionated component 1 exhibits a peak attributable to carboxylic acid in a Fourier transform infrared spectroscopy (FT-IR) measurement and exhibits a peak attributable to cellulose in a gas chromatography mass spectrometry (GC-MS) measurement, and wherein an ethanol-dissolved component of the fractionated component 1 exhibits a peak attributable to carboxylic acid in the FT-IR measurement and exhibits a peak attributable to a plant protein in the GC-MS measurement, and a water-purifying agent containing the extract.
Abstract:
An anionic flocculant including: galactomannan; and a polysaccharide other than the galactomannan, wherein the anionic flocculant has a bulk density of 0.50 g/cm3 or more but 1.00 g/cm3 or less, the anionic flocculant has a particle diameter D50 of 250 μm or more but 850 μm or less, and the anionic flocculant has a particle diameter D10 of 150 μm or more.
Abstract:
Provided are an extract, which is a fractionated component 1 of a water extract of a plant powder, wherein the fractionated component 1 is a fractionated component having a fractionation molecular weight of 12,000 or greater, wherein an ethanol-undissolved component of the fractionated component 1 exhibits a peak attributable to carboxylic acid in a Fourier transform infrared spectroscopy (FT-IR) measurement and exhibits a peak attributable to cellulose in a gas chromatography mass spectrometry (GC-MS) measurement, and wherein an ethanol-dissolved component of the fractionated component 1 exhibits a peak attributable to carboxylic acid in the FT-IR measurement and exhibits a peak attributable to a plant protein in the GC-MS measurement, and a water-purifying agent containing the extract.
Abstract:
Provided is a method of manufacturing a heat conductive sheet with improved adhesion and heat conductivity. The method includes the steps of molding a heat conductive resin composition, which includes heat conductive fillers and a binder resin, into a predetermined shape and curing the heat conductive resin composition to obtain a molded product of the heat conductive resin composition, cutting the molded product into sheets to obtain a molded product sheet, and pressing the molded product sheet.
Abstract:
Provided is a method of manufacturing a heat conductive sheet that itself is imparted with stickiness and has reduced heat resistance due to improved adhesion to a heat generator and a heat dissipater and that may be fixed provisionally without the need for using an adhesive agent or the like. The method includes the steps of molding a heat conductive resin composition, which includes heat conductive fillers and a binder resin, into a predetermined shape and curing the heat conductive resin composition to obtain a molded product of the heat conductive resin composition, cutting the molded product into sheets to obtain a molded product sheet, and coating an entire surface of a sheet main body (7) with an uncured component (8) of the binder resin oozing from the sheet main body (7).
Abstract:
A thermally conductive sheet, which contains: a binder; carbon fibers; and an inorganic filler, wherein the thermally conductive sheet is to be sandwiched between a heat source and a heat dissipation member of a semiconductor device, wherein the carbon fibers have an average fiber length of 50 μm to 250 μm, wherein thermal resistance of the thermally conductive sheet is less than 0.17 K·cm2/W, as measured in accordance with ASTM-D5470 with a load of 7.5 kgf/cm2, and wherein the thermally conductive sheet has an average thickness of 500 μm or less.