Abstract:
A compound is provided containing silicon, aluminum, strontium, europium, nitrogen, and oxygen is used that enables a red phosphor having strong luminous intensity and high luminance to be obtained, and that enables the color gamut of a white LED to be increased with the use of red phosphor. The red phosphor contains element A, europium, silicon, aluminum, oxygen, and nitrogen at the atom number ratio of the following formula: [Am−x)Eux]Si9AlyOnN [12+y−2(n−m)/3]. The element A in the formula is at least one of magnesium, calcium, strontium, and barium, and m, x, y, and n in the formula satisfy the relations 3
Abstract:
A compound is provided containing silicon, aluminum, strontium, europium, nitrogen, and oxygen is used that enables a red phosphor having strong luminous intensity and high luminance to be obtained, and that enables the color gamut of a white LED to be increased with the use of the red phosphor. The red phosphor contains an element A, europium, silicon, aluminum, oxygen, and nitrogen at the atom number ratio of the following formula: [A(m-x)Eux]Si9AlyOnN[12+y−2(n−m)/3]. The element A in the formula is at least one of magnesium, calcium, strontium, and barium, and m, x, y, and n in the formula satisfy the relations 3
Abstract:
A method for manufacturing green-emitting phosphor particles including the steps of producing a powder containing europium and strontium from a solution containing a europium compound and a strontium compound, mixing the resulting powder and a powdered gallium compound, and performing firing.