Abstract:
Provided are vector constructs and methods for expressing a transgene in plant cells and/or plant tissues using gene regulatory elements, including the promoters, 5′-UTRs, and/or 3′-UTRs, isolated from Zea mays.
Abstract:
This invention is related to methods and systems for vector assembly for transgenic plants. A uniform modular process is used to reduce cycle time and the methods and systems provided herein can increase cloning throughput using multiple-well plates, for example 96-well plates. In some embodiments, the methods and systems provided herein eliminate or reduce the need for sequencing confirmation because no PCR is involved in the vector assembly process.
Abstract:
Provided are methods, vectors and gene constructs for enhancing expression of a recombinant nucleic acid sequence in transgenic plants and plant tissues. According to the present invention, nucleic acid sequences are obtained and/or derived from the 3′ untranslated regions of genes encoding ubiquitin proteins and engineered to flank respective portions of a selected coding region of a vector. The vector construct may be introduced into plants and/or plant tissues through conventional or gene targeting procedures, resulting in enhanced expression of the selected coding region. In some embodiments, the selected coding region is a chimeric gene or gene fragment expressing one or more proteins known to impart a level of insecticidal activity to a transgenic plant and/or plant tissue.
Abstract:
A method of gene editing or gene stacking within a FAD3 loci by cleaving, in a site directed manner, a location in a FAD3 gene in a cell, to generate a break in the FAD3 gene and then ligating into the break a nucleic acid molecule associated with one or more traits of interest is disclosed.
Abstract:
Provided are constructs and methods for expressing multiple genes in plant cells and/or plant tissues. The constructs provided comprise at least one bi-directional promoter linked to multiple gene expression cassettes, wherein the bi-directional promoter comprises a functional promoter nucleotide sequence from Sugar Cane Bacilliform Virus promoter. In some embodiments, the constructs and methods provided employs a bi-directional promoter based on a minimal core promoter element from a Zea mays Ubiquitin-1 gene, or a functional equivalent thereof, and nucleotide sequence elements from a Sugar Cane Bacilliform Virus promoter. In some embodiments, the constructs and methods provided allow expression of genes between three and twenty.
Abstract:
Provided are constructs and methods for expressing multiple genes in plant cells and/or plant tissues using a disclosed bidirectional promoter from Brassica napus or Brassica bidirectional constitutive promoter (BBCP). The constructs provided comprise at least one such bi-directional promoter linked to multiple gene expression cassettes, wherein each of the gene expression cassettes comprises at least one transgene. In some embodiments, the constructs and methods provided allow expression of genes between two and twenty.
Abstract:
The subject disclosure relates in part to endpoint TaqMan® PCR assays for the detection and high throughput zygosity analysis of the fad-3c gene in canola. The subject disclosure further relates, in part, to the use of wild type DNA as a reference for use in determining zygosity. These and other related procedures can be used to uniquely identify the zygosity and variety of canola lines comprising the subject gene. The subject disclosure also provides related kits for determining zygosity from a sample of a canola plant or seed, for example.
Abstract:
The invention provides DNA compositions that relate to transgenic insect resistant maize plants. Also provided are assays for detecting the presence of the maize DAS-59122-7 event based on the DNA sequence of the recombinant construct inserted into the maize genome and the DNA sequences flanking the insertion site. Kits and conditions useful in conducting the assays are provided.
Abstract:
A method of gene editing or gene stacking within a FAD3 loci by cleaving, in a site directed manner, a location in a FAD3 gene in a cell, to generate a break in the FAD3 gene and then ligating into the break a nucleic acid molecule associated with one or more traits of interest is disclosed.