Abstract:
A container blow molded from a multilayer structure which comprises an inner product facing layer which comprises an ethylene-based polymer having a density equal to or less than 0.940 g/cc, a crystallinity of equal to or less than 62%, and Mz/Mn ratio equal to or less than 100, wherein the inner product facing layer has a small scale root mean square roughness of equal to or less than 40 nm and/or a large scale root mean square roughness of equal to or less than 500 nm is provided.
Abstract:
The instant invention provides a polyethylene blend-composition suitable for blown films, and films made therefrom. The polyethylene blend-composition suitable for blown films according to the present invention comprises the melt blending product of: (a) from 0.5 to 6 percent by weight of a bimodal linear low density polyethylene having a density in the range of from 0.935 to 0.970 g/cm3, and a melt index (I2) in the range of from 0.3 to 5 g/10 minutes; (b) 90 percent or greater by weight of a monomodal linear low density polyethylene having a density in the range of from 0.910 to 0.950 g/cm3, and a melt index (I2) in the range of from 0.1 to less than or equal to 5 g/10 minutes; (c) optionally from 0.5 to 4 percent by weight of a low density polyethylene having a density in the range of from 0.915 to 0.935 g/cm3, and a melt index (I2) in the range of from greater than 0.8 to less than or equal to 5 g/10 minutes, and a molecular weight distribution (Mw/Mn) in the range of from 6 to 10; (d) optionally a hydrotalcite based neutralizing agent; (e) optionally one or more nucleating agents; and (f) optionally one or more antioxidants.
Abstract translation:本发明提供了适用于吹塑薄膜的聚乙烯共混组合物和由其制成的薄膜。 适用于本发明吹塑薄膜的聚乙烯混合物组合物包括:(a)0.5至6重量%密度为0.935-0.970g的双峰线型低密度聚乙烯的熔融共混产物 / cm 3,熔体指数(I 2)在0.3〜5g / 10分钟的范围内; (b)90重量%以上密度为0.910〜0.950g / cm 3的单峰线性低密度聚乙烯,熔体指数(I 2)为0.1〜小于等于 5克/ 10分钟; (c)任选的0.5至4重量%的密度在0.915至0.935g / cm 3范围内的低密度聚乙烯,熔体指数(I 2)在大于0.8至小于或等于0.8的范围内, 等于5g / 10分钟,分子量分布(Mw / Mn)在6至10的范围内; (d)任选的基于水滑石的中和剂; (e)任选的一种或多种成核剂; 和(f)任选的一种或多种抗氧化剂。
Abstract:
The present disclosure relates to multilayer thermoplastic films particularly suited for use in liners. The films contain organic voiding agents to produce opacity when stretched while maintaining an MD Tear Strength of at least 150 gm/mil and a Dart Impact of at least 150 gm/mil. Such performance can be maintained by selection and amounts of resins, organic voiding agents and processing conditions of the films.
Abstract:
The present disclosure relates to multilayer thermoplastic films particularly suited for use in liners. The films contain organic fillers to produce opacity when stretched while maintaining an MD Tear Strength of at least 200 gm and a Dart Impact of at least 200 gm. Such performance can be maintained by selection and amounts of resins, organic fillers and processing conditions of the films.
Abstract:
The instant invention provides a polyethylene blend-composition suitable for blown films, and films made therefrom. The polyethylene blend-composition suitable for blown films according to the present invention comprises the melt blending product of: (a) from 0.5 to 6 percent by weight of a bimodal linear low density polyethylene having a density in the range of from 0.935 to 0.970 g/cm3, and a melt index (I2) in the range of from 0.3 to 5 g/10 minutes; (b) 90 percent or greater by weight of a monomodal linear low density polyethylene having a density in the range of from 0.910 to 0.950 g/cm3, and a melt index (I2) in the range of from 0.1 to less than or equal to 5 g/10 minutes; (c) optionally from 0.5 to 4 percent by weight of a low density polyethylene having a density in the range of from 0.915 to 0.935 g/cm3, and a melt index (I2) in the range of from greater than 0.8 to less than or equal to 5 g/10 minutes, and a molecular weight distribution (Mw/Mn) in the range of from 6 to 10; (d) optionally a hydrotalcite based neutralizing agent; (e) optionally one or more nucleating agents; and (f) optionally one or more antioxidants.
Abstract translation:本发明提供了适用于吹塑薄膜的聚乙烯共混组合物和由其制成的薄膜。 适用于本发明吹塑薄膜的聚乙烯混合物组合物包括:(a)0.5至6重量%密度为0.935-0.970g的双峰线型低密度聚乙烯的熔融共混产物 / cm 3,熔体指数(I 2)在0.3〜5g / 10分钟的范围内; (b)90重量%以上密度为0.910〜0.950g / cm 3的单峰线性低密度聚乙烯,熔体指数(I 2)为0.1〜小于等于 5克/ 10分钟; (c)任选的0.5至4重量%的密度在0.915至0.935g / cm 3范围内的低密度聚乙烯,熔体指数(I 2)在大于0.8至小于或等于0.8的范围内, 等于5g / 10分钟,分子量分布(Mw / Mn)在6至10的范围内; (d)任选的基于水滑石的中和剂; (e)任选的一种或多种成核剂; 和(f)任选的一种或多种抗氧化剂。
Abstract:
The instant invention provides a linear low density polyethylene composition suitable for film applications, and films made therefrom. The linear low density polyethylene composition suitable for film applications comprises: (a) less than or equal to 100 percent by weight of the units derived from ethylene; and (b) less than 35 percent by weight of units derived from one or more α-olefin comonomers; wherein said linear low density polyethylene composition has a density in the range of 0.905 to 0.925 g/cm3, a molecular weight distribution (Mw/Mn) in the range of 2.5 to 4.5, a melt index (I2) in the range of 0.1 to 3 g/10 minutes, a molecular weight distribution (Mz/Mw) in the range of from 2.2 to 3, vinyl unsaturation of less than 0.1 vinyls per one thousand carbon atoms present in the backbone of said composition, and a zero shear viscosity ratio (ZSVR) in the range from 1 to 1.2.
Abstract:
The instant invention provides a polyolefin blend composition suitable for film applications, and films made therefrom. The polyolefin blend suitable for film applications according to the present invention comprises: (a) a linear low density polyethylene composition comprising: g: (i) less than or equal to 100 percent by weight of the units derived from ethylene; and (ii) less than 35 percent by weight of units derived from one or more ?-olefin comonomers; wherein said linear low density polyethylene composition has a density in the range of 0.905 to 0.925 g/cm3, a molecular weight distribution (Mw/Mn) in the range of 2.5 to 4.5, a melt index (I2) in the range of 0.1 to 3 g/10 minutes, a molecular weight distribution (Mz/Mw) in the range of from 2.2 to 3, vinyl unsaturation of less than 0.1 vinyls per one thousand carbon atoms present in the backbone of said composition, and a zero shear viscosity ratio (ZSVR) in the range from 1 to 1.2; and (b) from 10 to 30 percent by weight of a low density polyethylene composition having a density in the range of 0.915 to 0.930 g/cm3, a melt index (I2) in the range of 0.1 to 5 g/10 minutes, and a molecular weight distribution (Mw/Mn) in the range of 6 to 10.
Abstract:
The present invention relates to a monolayer film comprising a mixture of a first linear polyethylene having a density in the range of from 0.926 to 0.970 g/cm3; a second LLDPE having a density in the range of from 0.868 to 0.920 g/cm3; and a nucleating agent to get to a better balance of low WVTR and dart while still allowing film production from it on standard monolayer equipment without need for co-extrusion capability. The LLDPE with the higher density is further characterized by having at least 57 percent (by weight of that component) of molecules having a weight average molecular weight in the range of 31,000 g/mole to 1,000,000 g/mole. These components are blended in various ratios ranging from 50 to 90% of the higher density LLDPE, 10 to 50% of the lower density LLDPE and at least 50 ppm of the nucleating agent.
Abstract:
The present disclosure relates to multilayer thermoplastic films particularly suited for use in liners. The films contain organic fillers to produce opacity when stretched while maintaining an MD Tear Strength of at least 200 gm and a Dart Impact of at least 200 gm. Such performance can be maintained by selection and amounts of resins, organic fillers and processing conditions of the films.
Abstract:
The present invention relates to a monolayer film comprising a mixture of a first linear polyethylene having a density in the range of from 0.926 to 0.970 g/cm3; a second LLDPE having a density in the range of from 0.868 to 0.920 g/cm3; and a nucleating agent to get to a better balance of low WVTR and dart while still allowing film production from it on standard monolayer equipment without need for co-extrusion capability. The LLDPE with the higher density is further characterized by having at least 57 percent (by weight of that component) of molecules having a weight average molecular weight in the range of 31,000 g/mole to 1,000,000 g/mole. These components are blended in various ratios ranging from 50 to 90% of the higher density LLDPE, 10 to 50% of the lower density LLDPE and at least 50 ppm of the nucleating agent.